The impact of fly ash content on bond performance of steel bars and their surrounding concrete is studied by means of sticking strain gauges on steel bars. The average bond stress-slip curves, the steel strain-anchor ...The impact of fly ash content on bond performance of steel bars and their surrounding concrete is studied by means of sticking strain gauges on steel bars. The average bond stress-slip curves, the steel strain-anchor location curves, and the bond stress-anchor position curves of the pullout specimens with various fly ash contents are obtained. Results indicate that the bond performance of concrete and steel bars can be improved and the distribution of steel strain along the anchorage length tends to be more uniform by adding fly ash in concrete specimens, and both ultimate bond stress and ultimate slip deformation increase the most when 20% of specimens′ content is fly ash.展开更多
The enhancement effects of GH admixture on the early strengths of fly ash concrete and mortar were studied, and the mechanism was analyzed by X-ray diffraction (XRD) and scanning electro microscope (SEM). Experime...The enhancement effects of GH admixture on the early strengths of fly ash concrete and mortar were studied, and the mechanism was analyzed by X-ray diffraction (XRD) and scanning electro microscope (SEM). Experimental results show that, by the incorporation of GH admixture, both of cement hydration and pozzolanic reaction of fly ash are accelerated, the strengths of fly ash concrete and mortar are enhanced noticeably, especially the early strength. With a mixture design of 200 kg/m^3 OPC (Ordinary Portland Cement ), 200 kg/m^3 fly ash and 50 kg/m^3 GH admixture, the strength of concrete at 1 d, 3 d and 28 d reaches 25 MPa, 50 MPa and 70 MPa respectively.展开更多
HVFA (high-volume fly ash) concrete could be a sustainable way for by-product utilization to conserve natural resources and protect environment. HVFA concrete can play the role of a high-performance material that ma...HVFA (high-volume fly ash) concrete could be a sustainable way for by-product utilization to conserve natural resources and protect environment. HVFA concrete can play the role of a high-performance material that may be comparable to the conventional Portland cement concrete. The results of the research programme concerning the relationships between the composition of concrete (w/b ratio, fly ash content and type of cement) and their physical and mechanical properties are presented and discussed in the paper. It is found that the introduction of high-volume fly ash into concrete has caused a decrease in compressive strength at the early age of storage. The significant increase in strength was observed between 28 days and 90 days of curing. The high-volume fly ash concretes were characterized with lower water absorbability and sorptivity than control concrete.展开更多
The measures of steam curing and early-strengthening agents to promote the precast components to reach the target strength quickly can bring different degrees of damage to the concrete.Based on this,the new nanomateri...The measures of steam curing and early-strengthening agents to promote the precast components to reach the target strength quickly can bring different degrees of damage to the concrete.Based on this,the new nanomaterial CSH-the hydration product of cement effectively solves these measures’disadvantages,such as excessive energy consumption,thermal stress damage,and the introduction of external ions.In this paper,the effect of CSH on the early strength of precast fly ash concrete components was investigated in terms of setting time,workability,and mechanical properties and analyzed at the microscopic level using hydration temperature,XRD,and SEM.The results showed that under the same workability,CSH could significantly reduce the amount of admixture,shorten the final setting time,almost not affect the initial setting time,and accelerate the hydration of cement.At the optimum dose of 5%,the mechanical properties of the specimens were improved by more than 98%within 12 h of hydration,resulting in an earlier release time of 12 h and no risk of strength inversion later.The results of this paper give theoretical support to the behavior of precast components under steam-free curing.展开更多
基金Supported by the Program of Excellent Talents in Six Fields of Jiangsu Province(2008183)~~
文摘The impact of fly ash content on bond performance of steel bars and their surrounding concrete is studied by means of sticking strain gauges on steel bars. The average bond stress-slip curves, the steel strain-anchor location curves, and the bond stress-anchor position curves of the pullout specimens with various fly ash contents are obtained. Results indicate that the bond performance of concrete and steel bars can be improved and the distribution of steel strain along the anchorage length tends to be more uniform by adding fly ash in concrete specimens, and both ultimate bond stress and ultimate slip deformation increase the most when 20% of specimens′ content is fly ash.
基金the National Nature Science Foundation of China (No. 50679054)
文摘The enhancement effects of GH admixture on the early strengths of fly ash concrete and mortar were studied, and the mechanism was analyzed by X-ray diffraction (XRD) and scanning electro microscope (SEM). Experimental results show that, by the incorporation of GH admixture, both of cement hydration and pozzolanic reaction of fly ash are accelerated, the strengths of fly ash concrete and mortar are enhanced noticeably, especially the early strength. With a mixture design of 200 kg/m^3 OPC (Ordinary Portland Cement ), 200 kg/m^3 fly ash and 50 kg/m^3 GH admixture, the strength of concrete at 1 d, 3 d and 28 d reaches 25 MPa, 50 MPa and 70 MPa respectively.
文摘HVFA (high-volume fly ash) concrete could be a sustainable way for by-product utilization to conserve natural resources and protect environment. HVFA concrete can play the role of a high-performance material that may be comparable to the conventional Portland cement concrete. The results of the research programme concerning the relationships between the composition of concrete (w/b ratio, fly ash content and type of cement) and their physical and mechanical properties are presented and discussed in the paper. It is found that the introduction of high-volume fly ash into concrete has caused a decrease in compressive strength at the early age of storage. The significant increase in strength was observed between 28 days and 90 days of curing. The high-volume fly ash concretes were characterized with lower water absorbability and sorptivity than control concrete.
文摘The measures of steam curing and early-strengthening agents to promote the precast components to reach the target strength quickly can bring different degrees of damage to the concrete.Based on this,the new nanomaterial CSH-the hydration product of cement effectively solves these measures’disadvantages,such as excessive energy consumption,thermal stress damage,and the introduction of external ions.In this paper,the effect of CSH on the early strength of precast fly ash concrete components was investigated in terms of setting time,workability,and mechanical properties and analyzed at the microscopic level using hydration temperature,XRD,and SEM.The results showed that under the same workability,CSH could significantly reduce the amount of admixture,shorten the final setting time,almost not affect the initial setting time,and accelerate the hydration of cement.At the optimum dose of 5%,the mechanical properties of the specimens were improved by more than 98%within 12 h of hydration,resulting in an earlier release time of 12 h and no risk of strength inversion later.The results of this paper give theoretical support to the behavior of precast components under steam-free curing.