Blasting in surface mines aims to fragment rock masses to a proper size.However,flyrock is an undesirable effect of blasting that can result in human injuries.In this study,support vector regression(SVR)is combined wi...Blasting in surface mines aims to fragment rock masses to a proper size.However,flyrock is an undesirable effect of blasting that can result in human injuries.In this study,support vector regression(SVR)is combined with four algorithms:gravitational search algorithm(GSA),biogeography-based optimization(BBO),ant colony optimization(ACO),and whale optimization algorithm(WOA)for predicting flyrock in two surface mines in Iran.Additionally,three other methods,including artificial neural network(ANN),kernel extreme learning machine(KELM),and general regression neural network(GRNN),are employed,and their performances are compared to those of four hybrid SVR models.After modeling,the measured and predicted flyrock values are validated with some performance indices,such as root mean squared error(RMSE).The results revealed that the SVR-WOA model has the most optimal accuracy,with an RMSE of 7.218,while the RMSEs of the KELM,GRNN,SVR-GSA,ANN,SVR-BBO,and SVR-ACO models are 10.668,10.867,15.305,15.661,16.239,and 18.228,respectively.Therefore,combining WOA and SVR can be a valuable tool for accurately predicting flyrock distance in surface mines.展开更多
Blasting is a cost-effective technique to break hard rock volumes by using explosives in the mining and civil engineering realms. Moreover, although blasting is a designed process and plays an indispensable role in th...Blasting is a cost-effective technique to break hard rock volumes by using explosives in the mining and civil engineering realms. Moreover, although blasting is a designed process and plays an indispensable role in these industries, it can also have multiple adverse environmental impacts. One such effect is flyrock, which poses risks to nearby machinery, and residential structures, and can even lead to injuries or fatalities. To optimize blasting efficiency as well as restrict side effects, prediction of the blast aftereffects is vital. Therefore, the present work focuses on using two machine learning methods to predict the velocity of flyrock in the open pit mine. To address this issue, a comprehensive dataset was gathered from the open pit mine. Then, Decision Tree and Random Forest algorithms were employed to predict flyrock velocity. The Random Forest model demonstrated superior performance compared to the Decision Tree model. Nonetheless, the performance of the Decision Tree model was deemed satisfactory, as evidenced by its coefficient of determination value of 0.83, mean squared error (MSE) of 4.2, and mean absolute percentage error (MAPE) of 5.6%. Considering these metrics, it is reasonable to conclude that tree-based algorithms can be effective in predicting flyrock velocity.展开更多
In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead t...In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead to the flyrock phenomenon.Flyrock can damage structures or nearby equipment in the surrounding areas and inflict harm to humans,especially workers in the working sites.Thus,prediction of flyrock is of high importance.In this investigation,examination and estimation/forecast of flyrock distance induced by blasting through the application of five artificial intelligent algorithms were carried out.One hundred and fifty-two blasting events in three open-pit granite mines in Johor,Malaysia,were monitored to collect field data.The collected data include blasting parameters and rock mass properties.Site-specific weathering index(WI),geological strength index(GSI) and rock quality designation(RQD)are rock mass properties.Multi-layer perceptron(MLP),random forest(RF),support vector machine(SVM),and hybrid models including Harris Hawks optimization-based MLP(known as HHO-MLP) and whale optimization algorithm-based MLP(known as WOA-MLP) were developed.The performance of various models was assessed through various performance indices,including a10-index,coefficient of determination(R^(2)),root mean squared error(RMSE),mean absolute percentage error(MAPE),variance accounted for(VAF),and root squared error(RSE).The a10-index values for MLP,RF,SVM,HHO-MLP and WOA-MLP are 0.953,0.933,0.937,0.991 and 0.972,respectively.R^(2) of HHO-MLP is 0.998,which achieved the best performance among all five machine learning(ML) models.展开更多
Flyrock is one of the most hazardous events in blasting operation of surface mines. There are several empirical methods to predict flyrock. Low performance of such models is due to the complexity of flyrock analysis. ...Flyrock is one of the most hazardous events in blasting operation of surface mines. There are several empirical methods to predict flyrock. Low performance of such models is due to the complexity of flyrock analysis. Existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, the application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict flyrock in blasting operations of Soungun Copper Mine, Iran incorporating rock properties and blast design parameters using support vector machine (SVM) method. To investigate the suitability of this approach, the predictions by SVM have been compared with multivariate regression analysis (MVRA), too. Coefficient of determination (CoD) and mean absolute error (MAE) were taken as performance measures. It was found that CoD between measured and predicted flyrock was 0.948 and 0.440 by SVM and MVRA, respectively, whereas MAE between measured and predicted flyrock was 3.11 and 7.74 by SVM and MVRA, respectively.展开更多
Frequency and scale of the blasting events are increasing to boost limestone production. Mines areapproaching close to inhabited areas due to growing population and limited availability of land resourceswhich has chal...Frequency and scale of the blasting events are increasing to boost limestone production. Mines areapproaching close to inhabited areas due to growing population and limited availability of land resourceswhich has challenged the management to go for safe blasts with special reference to opencast mining.The study aims to predict the distance covered by the flyrock induced by blasting using artificial neuralnetwork (ANN) and multi-variate regression analysis (MVRA) for better assessment. Blast design andgeotechnical parameters, such as linear charge concentration, burden, stemming length, specific charge,unconfined compressive strength (UCS), and rock quality designation (RQD), have been selected as inputparameters and flyrock distance used as output parameter. ANN has been trained using 95 datasets ofexperimental blasts conducted in 4 opencast limestone mines in India. Thirty datasets have been used fortesting and validation of trained neural network. Flyrock distances have been predicted by ANN, MVRA,as well as further calculated using motion analysis of flyrock projectiles and compared with the observeddata. Back propagation neural network (BPNN) has been proven to be a superior predictive tool whencompared with MVRA. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
Blasting is a common method of breaking rock in surface mines.Although the fragmentation with proper size is the main purpose,other undesirable effects such as flyrock are inevitable.This study is carried out to evalu...Blasting is a common method of breaking rock in surface mines.Although the fragmentation with proper size is the main purpose,other undesirable effects such as flyrock are inevitable.This study is carried out to evaluate the capability of a novel kernel-based extreme learning machine algorithm,called kernel extreme learning machine(KELM),by which the flyrock distance(FRD) is predicted.Furthermore,the other three data-driven models including local weighted linear regression(LWLR),response surface methodology(RSM) and boosted regression tree(BRT) are also developed to validate the main model.A database gathered from three quarry sites in Malaysia is employed to construct the proposed models using 73 sets of spacing,burden,stemming length and powder factor data as inputs and FRD as target.Afterwards,the validity of the models is evaluated by comparing the corresponding values of some statistical metrics and validation tools.Finally,the results verify that the proposed KELM model on account of highest correlation coefficient(R) and lowest root mean square error(RMSE) is more computationally efficient,leading to better predictive capability compared to LWLR,RSM and BRT models for all data sets.展开更多
露天矿边坡爆破产生的飞石对周围人机系统造成破坏,基于颗粒流理论研究了爆破后飞石的飞出距离。以海州矿某边坡为例,在边坡上设置了3种药量TNT的15个爆破点,对计算平衡后模型中颗粒飞出的散落情况进行了研究。结果表明,细观过程可分为...露天矿边坡爆破产生的飞石对周围人机系统造成破坏,基于颗粒流理论研究了爆破后飞石的飞出距离。以海州矿某边坡为例,在边坡上设置了3种药量TNT的15个爆破点,对计算平衡后模型中颗粒飞出的散落情况进行了研究。结果表明,细观过程可分为3个阶段:爆炸冲击起主导作用的阶段、重力占优势的上覆岩层塌落阶段、颗粒下滑局部调整至平衡阶段。最大飞石距离小于450 m;A1到A15的飞石距离逐渐减小;1 kg TNT使岩石松动滑落,5 kg TNT飞石距离在250 m以内,10 kg TNT的飞石距离随爆破点的位置不同而不同。同时,飞石的距离与上覆岩层的完整性有很大关系。展开更多
文摘Blasting in surface mines aims to fragment rock masses to a proper size.However,flyrock is an undesirable effect of blasting that can result in human injuries.In this study,support vector regression(SVR)is combined with four algorithms:gravitational search algorithm(GSA),biogeography-based optimization(BBO),ant colony optimization(ACO),and whale optimization algorithm(WOA)for predicting flyrock in two surface mines in Iran.Additionally,three other methods,including artificial neural network(ANN),kernel extreme learning machine(KELM),and general regression neural network(GRNN),are employed,and their performances are compared to those of four hybrid SVR models.After modeling,the measured and predicted flyrock values are validated with some performance indices,such as root mean squared error(RMSE).The results revealed that the SVR-WOA model has the most optimal accuracy,with an RMSE of 7.218,while the RMSEs of the KELM,GRNN,SVR-GSA,ANN,SVR-BBO,and SVR-ACO models are 10.668,10.867,15.305,15.661,16.239,and 18.228,respectively.Therefore,combining WOA and SVR can be a valuable tool for accurately predicting flyrock distance in surface mines.
文摘Blasting is a cost-effective technique to break hard rock volumes by using explosives in the mining and civil engineering realms. Moreover, although blasting is a designed process and plays an indispensable role in these industries, it can also have multiple adverse environmental impacts. One such effect is flyrock, which poses risks to nearby machinery, and residential structures, and can even lead to injuries or fatalities. To optimize blasting efficiency as well as restrict side effects, prediction of the blast aftereffects is vital. Therefore, the present work focuses on using two machine learning methods to predict the velocity of flyrock in the open pit mine. To address this issue, a comprehensive dataset was gathered from the open pit mine. Then, Decision Tree and Random Forest algorithms were employed to predict flyrock velocity. The Random Forest model demonstrated superior performance compared to the Decision Tree model. Nonetheless, the performance of the Decision Tree model was deemed satisfactory, as evidenced by its coefficient of determination value of 0.83, mean squared error (MSE) of 4.2, and mean absolute percentage error (MAPE) of 5.6%. Considering these metrics, it is reasonable to conclude that tree-based algorithms can be effective in predicting flyrock velocity.
基金supported by the Center for Mining,Electro-Mechanical Research of Hanoi University of Mining and Geology(HUMG),Hanoi,Vietnam。
文摘In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead to the flyrock phenomenon.Flyrock can damage structures or nearby equipment in the surrounding areas and inflict harm to humans,especially workers in the working sites.Thus,prediction of flyrock is of high importance.In this investigation,examination and estimation/forecast of flyrock distance induced by blasting through the application of five artificial intelligent algorithms were carried out.One hundred and fifty-two blasting events in three open-pit granite mines in Johor,Malaysia,were monitored to collect field data.The collected data include blasting parameters and rock mass properties.Site-specific weathering index(WI),geological strength index(GSI) and rock quality designation(RQD)are rock mass properties.Multi-layer perceptron(MLP),random forest(RF),support vector machine(SVM),and hybrid models including Harris Hawks optimization-based MLP(known as HHO-MLP) and whale optimization algorithm-based MLP(known as WOA-MLP) were developed.The performance of various models was assessed through various performance indices,including a10-index,coefficient of determination(R^(2)),root mean squared error(RMSE),mean absolute percentage error(MAPE),variance accounted for(VAF),and root squared error(RSE).The a10-index values for MLP,RF,SVM,HHO-MLP and WOA-MLP are 0.953,0.933,0.937,0.991 and 0.972,respectively.R^(2) of HHO-MLP is 0.998,which achieved the best performance among all five machine learning(ML) models.
文摘Flyrock is one of the most hazardous events in blasting operation of surface mines. There are several empirical methods to predict flyrock. Low performance of such models is due to the complexity of flyrock analysis. Existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, the application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict flyrock in blasting operations of Soungun Copper Mine, Iran incorporating rock properties and blast design parameters using support vector machine (SVM) method. To investigate the suitability of this approach, the predictions by SVM have been compared with multivariate regression analysis (MVRA), too. Coefficient of determination (CoD) and mean absolute error (MAE) were taken as performance measures. It was found that CoD between measured and predicted flyrock was 0.948 and 0.440 by SVM and MVRA, respectively, whereas MAE between measured and predicted flyrock was 3.11 and 7.74 by SVM and MVRA, respectively.
文摘Frequency and scale of the blasting events are increasing to boost limestone production. Mines areapproaching close to inhabited areas due to growing population and limited availability of land resourceswhich has challenged the management to go for safe blasts with special reference to opencast mining.The study aims to predict the distance covered by the flyrock induced by blasting using artificial neuralnetwork (ANN) and multi-variate regression analysis (MVRA) for better assessment. Blast design andgeotechnical parameters, such as linear charge concentration, burden, stemming length, specific charge,unconfined compressive strength (UCS), and rock quality designation (RQD), have been selected as inputparameters and flyrock distance used as output parameter. ANN has been trained using 95 datasets ofexperimental blasts conducted in 4 opencast limestone mines in India. Thirty datasets have been used fortesting and validation of trained neural network. Flyrock distances have been predicted by ANN, MVRA,as well as further calculated using motion analysis of flyrock projectiles and compared with the observeddata. Back propagation neural network (BPNN) has been proven to be a superior predictive tool whencompared with MVRA. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
文摘Blasting is a common method of breaking rock in surface mines.Although the fragmentation with proper size is the main purpose,other undesirable effects such as flyrock are inevitable.This study is carried out to evaluate the capability of a novel kernel-based extreme learning machine algorithm,called kernel extreme learning machine(KELM),by which the flyrock distance(FRD) is predicted.Furthermore,the other three data-driven models including local weighted linear regression(LWLR),response surface methodology(RSM) and boosted regression tree(BRT) are also developed to validate the main model.A database gathered from three quarry sites in Malaysia is employed to construct the proposed models using 73 sets of spacing,burden,stemming length and powder factor data as inputs and FRD as target.Afterwards,the validity of the models is evaluated by comparing the corresponding values of some statistical metrics and validation tools.Finally,the results verify that the proposed KELM model on account of highest correlation coefficient(R) and lowest root mean square error(RMSE) is more computationally efficient,leading to better predictive capability compared to LWLR,RSM and BRT models for all data sets.
文摘露天矿边坡爆破产生的飞石对周围人机系统造成破坏,基于颗粒流理论研究了爆破后飞石的飞出距离。以海州矿某边坡为例,在边坡上设置了3种药量TNT的15个爆破点,对计算平衡后模型中颗粒飞出的散落情况进行了研究。结果表明,细观过程可分为3个阶段:爆炸冲击起主导作用的阶段、重力占优势的上覆岩层塌落阶段、颗粒下滑局部调整至平衡阶段。最大飞石距离小于450 m;A1到A15的飞石距离逐渐减小;1 kg TNT使岩石松动滑落,5 kg TNT飞石距离在250 m以内,10 kg TNT的飞石距离随爆破点的位置不同而不同。同时,飞石的距离与上覆岩层的完整性有很大关系。