As one of the most widely used personal protective equipment(PPE),body armors play an important role in protecting the human body from the high-velocity impact of bullets or projectiles.The body torso and critical org...As one of the most widely used personal protective equipment(PPE),body armors play an important role in protecting the human body from the high-velocity impact of bullets or projectiles.The body torso and critical organs of the wear may suffer severe behind-armor blunt trauma(BABT)even though the impactor is stopped by the body armor.A type of novel composite material through incorporating shear stiffening gel(STG)into ethylene-vinyl acetate(EVA)foam is developed and used as buffer layers to reduce BABT.In this paper,the protective performance of body armors composed of fabric bulletproof layers and a buffer layer made of foam material is investigated both experimentally and numerically.The effectiveness of STG-modified EVA in damage relief is verified by ballistic tests.In parallel with the experimental study,numerical simulations are conducted by LS-DYNA®to investigate the dynamic response of each component and capture the key mechanical parameters,which are hardly obtained from field tests.To fully describe the material behavior under the transient impact,the selected constitutive models take the failure and strain rate effect into consideration.A good agreement between the experimental observations and numerical results is achieved to prove the validity of the modelling method.The tests and simulations show that the impact-induced deformation on the human body is significantly reduced by using STG-modified EVA as the buffering material.The improvement of protective performance is attributed to better dynamic properties and more outstanding energy absorption capability of the composite foam.展开更多
Low-velocity impact damage known as“imperceptible”damage usually destroys the structural integrity of the material and seriously affects the service life of the materials.To improve the low-velocity impact resistanc...Low-velocity impact damage known as“imperceptible”damage usually destroys the structural integrity of the material and seriously affects the service life of the materials.To improve the low-velocity impact resistance of foam sandwich composites,an innovative concept of a stitched multi-layer sandwich structure by organically combining the discrete splitting of foam layer with full thickness stitching was proposed,and its low-velocity impact resistance obtained through drop-hammer impact tests was explored.The results showed that the multi-layer foam sandwich structure acted as a stress disperser and reduced the irreversible impact damage.The depth and area of low-velocity impact damage of multi-layer foam sandwich composites gradually decreased with increasing the number of the layers.The stitched structure would improve the integrity of the foam sandwich composites and inhibit the propagation of cracks.The maximum impact load of the stitched foam sandwich composite increased by approximately 5% compared with that of the non-stitched material.In addition,the low-velocity impact damage depth,damage area and absorbed energy of the stitched three-layer foam sandwich composite were reduced by 37.7%,34.6% and 20.7%,respectively,compared with those of the non-stitched single-layer sandwich material.展开更多
Heat storage properties of phase change materials(PCMs) are essential characteristics that perform a key role in thermal heat energy storage systems.The thermal properties of PCMs can be improved by developing metal f...Heat storage properties of phase change materials(PCMs) are essential characteristics that perform a key role in thermal heat energy storage systems.The thermal properties of PCMs can be improved by developing metal foam/PCM composites.The addition of metal foam in PCMs has a significant effect on the thermal characteristics of PCMs.In this paper,the heat storage properties of two different metal foam/PCM composites were experimentally examined.The behavior of paraffin in metal foam(copper and iron-nickel)/paraffin composites concerning pure paraffin at a constant heat flux of 1000 W/m^(2) in three directions simultaneously(x,y,and z) was studied.Paraffin was infiltrated into copper and iron-nickel foams to develop composite materials which resulted in enhancing the thermal conductivity of the paraffin.A comparative analysis is made on the heat storage properties of paraffin in copper and iron-nickel foams/paraffin composites.Inner temperature distribution during the phase transition process is experimentally evaluated.This comparison indicates that temperature uniformity in copper foam/paraffin composite is better than in iron-nickel foam/paraffin composite and pure paraffin at the same heat flux.Experimental results show that at heat flux of 1000 W/m^(2),the heat storage time for copper foam/paraffin composite is 20.63% of that of iron-nickel foam/paraffin composite.展开更多
The aluminum matrix syntactic foam was fabricated by pressure infiltration technique,and the filling material is syntactic foam material with fly ash cenosphere as the main component and polyurethane foam as the binde...The aluminum matrix syntactic foam was fabricated by pressure infiltration technique,and the filling material is syntactic foam material with fly ash cenosphere as the main component and polyurethane foam as the binder.Split Hopkinson pressure bar(SHPB)dynamic compression and quasi-static tests were carried out to examine the compressive response of syntactic foam in this study.Then the dynamic constitutive model was established.Results show that the compressive stress-strain curve of syntactic aluminum foam is similar to that of other metallic foam materials:both kinds of aluminum matrix syntactic foams have strain rate effect,and the syntactic foam has higher compressive strength and energy absorption than the same density aluminum foams.However,due to the different sizes of cenospheres,the dynamic compression results of two kinds of syntactic foams are different,and the energy absorption effect of syntactic foam with small size under dynamic impact is the best.In the range of strain rate and density studied experimentally,the curves of constitutive model fit well with the curves of experimental data.展开更多
Microstructural features including pore size distribution, cell walls and phase compositions of magnesium oxychloride cement foams(MOCF) with various MgO powders and water mixture ratios were studied. Their infl uen...Microstructural features including pore size distribution, cell walls and phase compositions of magnesium oxychloride cement foams(MOCF) with various MgO powders and water mixture ratios were studied. Their infl uences on compressive strength, water absorption and resistance of MOCF were also discussed in detail. The experimental results indicated that moderate and slight excess MgO powders(MgO/MgCl2 molar ratios from 5.1 to 7) were beneficial to the formation of excellent microstructure of MOCF, but increasing water contents(H2O/MgO mass ratios from 0.9 to 1.29) might result in opposite conclusions. The microstructure of MOCF produced with moderate and slight excess MgO powders could enhance the compressive strength, while serious excess MgO powders addition(MgO/MgCl2 molar ratios = 9) would destroy the cell wall structures, and therefore decrease the strength of the system. Although MOCF produced with excess MgO powders could decrease the water absorption, its softening coefficient was lower than that of the material produced with moderate MgO powders. This might be due to the instability of phase 5, the volume expansion and cracking of cell walls as immersed the sample into water.展开更多
Oil production and mainte nance are essential issues in naturally fractured reservoirs because they are the largest and most productive on earth.However,they present early water and gas channeling but could be remedia...Oil production and mainte nance are essential issues in naturally fractured reservoirs because they are the largest and most productive on earth.However,they present early water and gas channeling but could be remediated by using foaming agents to control these phenomena through blocking channeling areas.In Mexico these reservoirs have pressure up to 5,500 psi,high temperature up to 200℃,salinity up to400,000 ppm,and hardness up to 250,000 ppm;due to these thermodynamic conditions,there has been no available technology to form stable enough foams.In this work,a foaming supramolecular surfactant with the capability to chelate Ca^(2+)ions is examined.As a result,surfactant monomers are bridged by captured Ca^(2+)cations leading to the formation of high-molecular-weight oligomers,which significantly increment the viscosity of the solution improving the foam stability,and since at this manner the Ca2+cations are no longer available to precipitate as components of solid salts,the foaming supramolecular surfactant also performs as antiscalant.These observations are explained through quantum theoretical modeling.The foam is stable,effectively blocking the gas channels,whereas in presence of oil the foam is broken leading the oil to pass into the wellbore.The characteristic rheological properties of the foam allow its injection into the formation at a range of flow rates,foam qualities,and shear stress to achieve the flooding and the blocking of a variety of fractured carbonate formations,and the change of the wettability of the matrix,which is a desirable behavior in a huff and puff process,as reported in a previous publication about a successful pilot test of this foam.展开更多
This paper presents an experimental study of a novel K-Cor sandwich structure rein- forced with partially-cured Z-pins. The influence of pultrusion processing parameters on Z-pins characteristics was studied and the e...This paper presents an experimental study of a novel K-Cor sandwich structure rein- forced with partially-cured Z-pins. The influence of pultrusion processing parameters on Z-pins characteristics was studied and the effect of Z-pins on mechanical properties was disclosed. Differential scanning calorimetry (DSC) and optical microscopy (OM) methods were employed to determine the curing degree of as-prepared Z-pins and observe the implanted Z-pins in the K-Cor structure. These partially-cured Z-pins were treated with a stronger bonding link between face sheets and the foam core by means of a hot-press process, thereby decreasing burrs and cracking defects when the Z-pins were implanted into the Rohacell foam core. The results of the out-of-plane tensile tests and the climbing drum peel (CDP) tests showed that K-Cor structures exhibited superior mechanical performance as compared to X-Cor and blank foam core. The observed results of failure modes revealed that an effective bonding link between the foam core and face sheets that was provided from partially-cured Z-pins contributed to the enhanced mechan- ical performances of K-Cor sandwich structures.展开更多
Bio-based polyurethane foam has attracted increasing attentions due to eco-friendliness and fossil feedstock issues.However,the inherent flammability limits its application in different fields.Herein,we demonstrate a ...Bio-based polyurethane foam has attracted increasing attentions due to eco-friendliness and fossil feedstock issues.However,the inherent flammability limits its application in different fields.Herein,we demonstrate a green bio-based flame-retardant system to fabricate polyurethane foam composite with durable flame retardancy,smoke suppression,and thermal insulation property.In this system,the green bio-based polyol(VED)with good reactivity and compatibility plays a role of flame retardant and EG acts as a synergistic filler.As a result,the LOI value of foam composite increased to 30.5 vol.%and it achieved a V-0 rating in the UL-94 vertical burning test.Additionally,the peak heat release rate(pHRR)and the total smoke production(TSP)decreased by 66.1%and 63.4%,respectively.Furthermore,the foam composite maintained durable flame retardancy after accelerated thermal aging test,whose thermal-insulating property was maintained even after being treated in high-humidity environment with 85%R.H.for a week.This work provides a facile strategy for durable flame retardancy and long-term thermal insulation performance,and creates opportunities for the practical applications of bio-based foam composites.展开更多
The technology of hot composite foam displacement refers to the injection of high-temperature flue gas and foaming and stabilizing agent into wells with a certain concentration, and after meeting the formation water, ...The technology of hot composite foam displacement refers to the injection of high-temperature flue gas and foaming and stabilizing agent into wells with a certain concentration, and after meeting the formation water, a composite foam system is formed in the reservoir. This foam displacement technology involves thermal function and so is related to nitrogen, carbon dioxide and foam flooding characteristics. After analyzing seepage flow law of hot composite foam system, seepage flow experiment of composite foam under high pressure was conducted, and seepage flow ability of hot composite foam in porous media was investigated. In the experiment, surfactant HY-3 was chosen as the foaming agent and hot flue gas was chosen as the foaming gas, and high-pressure hot foaming apparatus was employed in experiments. The experimental results indicate that the surfactant HY-3 could form stable foam in porous media, and the foam has strong ability of plugging. It is concluded that the sealing performance of foam is improved with increasing permeability and resistance coefficient and with incresing injection rate and foam strength. After foam injection, sealing characteristics of heterogeneous cores is better than that of homogeneous cores. The foam pressure has a process of transmission in porous media. In this process, with the increase of injection volume, pressure from the inlet to the outlet increases gradually, which indicates that stable foam has been formed inside the core.展开更多
In this study,functionally graded foam made of Inconel 625 superalloy was successfully produced using the template replication method,with open-cell polyurethane foams as a precursor.The products have a similar pore m...In this study,functionally graded foam made of Inconel 625 superalloy was successfully produced using the template replication method,with open-cell polyurethane foams as a precursor.The products have a similar pore morphology as the templates and adjacent layers were successfully sintered together by particle bonding.Sound absorption experiments on graded metallic foams reveal that the sound absorption at particular frequency ranges can be improved by various permutations of foam layers.For graded foam of two distinct pore sizes,a mathematical equation was proposed to predict the location of the intersection point of the sound absorption curves,thereby aiding in graded foam design.An increase in sound absorption coefficients by resonance-like effects can be introduced before the intersection points by placing the foam layer of smaller pore size nearer to the sound source.The sound absorption performances can be further customized when the thickness proportion of the pore sizes is changed and when the number of distinct pore sizes used is increased.The sound absorption performance at lower frequencies is generally boosted by resonance-like effects when the layer of foam with the largest pore size is placed furthest from the sound source.Given the same composition of foam with a fixed thickness proportion of pore sizes,one can introduce resonance-like effects to improve the sound absorption performance compared to other permutations while possibly satisfying weight requirements in practical applications.This study provides valuable insights and mathematical guidelines in the design and manufacturing of functionally graded metallic foam for specific applications.展开更多
基金the National Natural Science Foundation of China(Grant Nos.12072356 and 12232020)the Science and Technology on Transient Impact Laboratory(Grant No.6142606221105)the Beijing Municipal Science and Technology Commission(Grant No.Z221100005822006).
文摘As one of the most widely used personal protective equipment(PPE),body armors play an important role in protecting the human body from the high-velocity impact of bullets or projectiles.The body torso and critical organs of the wear may suffer severe behind-armor blunt trauma(BABT)even though the impactor is stopped by the body armor.A type of novel composite material through incorporating shear stiffening gel(STG)into ethylene-vinyl acetate(EVA)foam is developed and used as buffer layers to reduce BABT.In this paper,the protective performance of body armors composed of fabric bulletproof layers and a buffer layer made of foam material is investigated both experimentally and numerically.The effectiveness of STG-modified EVA in damage relief is verified by ballistic tests.In parallel with the experimental study,numerical simulations are conducted by LS-DYNA®to investigate the dynamic response of each component and capture the key mechanical parameters,which are hardly obtained from field tests.To fully describe the material behavior under the transient impact,the selected constitutive models take the failure and strain rate effect into consideration.A good agreement between the experimental observations and numerical results is achieved to prove the validity of the modelling method.The tests and simulations show that the impact-induced deformation on the human body is significantly reduced by using STG-modified EVA as the buffering material.The improvement of protective performance is attributed to better dynamic properties and more outstanding energy absorption capability of the composite foam.
文摘Low-velocity impact damage known as“imperceptible”damage usually destroys the structural integrity of the material and seriously affects the service life of the materials.To improve the low-velocity impact resistance of foam sandwich composites,an innovative concept of a stitched multi-layer sandwich structure by organically combining the discrete splitting of foam layer with full thickness stitching was proposed,and its low-velocity impact resistance obtained through drop-hammer impact tests was explored.The results showed that the multi-layer foam sandwich structure acted as a stress disperser and reduced the irreversible impact damage.The depth and area of low-velocity impact damage of multi-layer foam sandwich composites gradually decreased with increasing the number of the layers.The stitched structure would improve the integrity of the foam sandwich composites and inhibit the propagation of cracks.The maximum impact load of the stitched foam sandwich composite increased by approximately 5% compared with that of the non-stitched material.In addition,the low-velocity impact damage depth,damage area and absorbed energy of the stitched three-layer foam sandwich composite were reduced by 37.7%,34.6% and 20.7%,respectively,compared with those of the non-stitched single-layer sandwich material.
文摘Heat storage properties of phase change materials(PCMs) are essential characteristics that perform a key role in thermal heat energy storage systems.The thermal properties of PCMs can be improved by developing metal foam/PCM composites.The addition of metal foam in PCMs has a significant effect on the thermal characteristics of PCMs.In this paper,the heat storage properties of two different metal foam/PCM composites were experimentally examined.The behavior of paraffin in metal foam(copper and iron-nickel)/paraffin composites concerning pure paraffin at a constant heat flux of 1000 W/m^(2) in three directions simultaneously(x,y,and z) was studied.Paraffin was infiltrated into copper and iron-nickel foams to develop composite materials which resulted in enhancing the thermal conductivity of the paraffin.A comparative analysis is made on the heat storage properties of paraffin in copper and iron-nickel foams/paraffin composites.Inner temperature distribution during the phase transition process is experimentally evaluated.This comparison indicates that temperature uniformity in copper foam/paraffin composite is better than in iron-nickel foam/paraffin composite and pure paraffin at the same heat flux.Experimental results show that at heat flux of 1000 W/m^(2),the heat storage time for copper foam/paraffin composite is 20.63% of that of iron-nickel foam/paraffin composite.
基金National Natural Science Foundation of China(No.11602233)。
文摘The aluminum matrix syntactic foam was fabricated by pressure infiltration technique,and the filling material is syntactic foam material with fly ash cenosphere as the main component and polyurethane foam as the binder.Split Hopkinson pressure bar(SHPB)dynamic compression and quasi-static tests were carried out to examine the compressive response of syntactic foam in this study.Then the dynamic constitutive model was established.Results show that the compressive stress-strain curve of syntactic aluminum foam is similar to that of other metallic foam materials:both kinds of aluminum matrix syntactic foams have strain rate effect,and the syntactic foam has higher compressive strength and energy absorption than the same density aluminum foams.However,due to the different sizes of cenospheres,the dynamic compression results of two kinds of syntactic foams are different,and the energy absorption effect of syntactic foam with small size under dynamic impact is the best.In the range of strain rate and density studied experimentally,the curves of constitutive model fit well with the curves of experimental data.
基金Funded by the National Natural Science Foundation of China(No.51478370)the EPSRC-NSFC Joint Research Projec(No.51461135005)
文摘Microstructural features including pore size distribution, cell walls and phase compositions of magnesium oxychloride cement foams(MOCF) with various MgO powders and water mixture ratios were studied. Their infl uences on compressive strength, water absorption and resistance of MOCF were also discussed in detail. The experimental results indicated that moderate and slight excess MgO powders(MgO/MgCl2 molar ratios from 5.1 to 7) were beneficial to the formation of excellent microstructure of MOCF, but increasing water contents(H2O/MgO mass ratios from 0.9 to 1.29) might result in opposite conclusions. The microstructure of MOCF produced with moderate and slight excess MgO powders could enhance the compressive strength, while serious excess MgO powders addition(MgO/MgCl2 molar ratios = 9) would destroy the cell wall structures, and therefore decrease the strength of the system. Although MOCF produced with excess MgO powders could decrease the water absorption, its softening coefficient was lower than that of the material produced with moderate MgO powders. This might be due to the instability of phase 5, the volume expansion and cracking of cell walls as immersed the sample into water.
基金supports granted by Instituto Mexicano del Petr oleo (IMP) through the Project Y.00123 “Procesos de RM en yacimientos carbonatados fracturados de alta salinidad y temperatura con base en el dise~no, desarrollo y escalamiento de productos químicos ad hoc”financially supported by the SENER-CONACYT/Hidrocarburos fund through the Project 146735, D.61029 “Dise~no y síntesis de nuevos prototipos de productos químicos multifuncionales con propiedades dispersantes de asfaltenos modificadoras de la mojabilidad y desemulsificantes”
文摘Oil production and mainte nance are essential issues in naturally fractured reservoirs because they are the largest and most productive on earth.However,they present early water and gas channeling but could be remediated by using foaming agents to control these phenomena through blocking channeling areas.In Mexico these reservoirs have pressure up to 5,500 psi,high temperature up to 200℃,salinity up to400,000 ppm,and hardness up to 250,000 ppm;due to these thermodynamic conditions,there has been no available technology to form stable enough foams.In this work,a foaming supramolecular surfactant with the capability to chelate Ca^(2+)ions is examined.As a result,surfactant monomers are bridged by captured Ca^(2+)cations leading to the formation of high-molecular-weight oligomers,which significantly increment the viscosity of the solution improving the foam stability,and since at this manner the Ca2+cations are no longer available to precipitate as components of solid salts,the foaming supramolecular surfactant also performs as antiscalant.These observations are explained through quantum theoretical modeling.The foam is stable,effectively blocking the gas channels,whereas in presence of oil the foam is broken leading the oil to pass into the wellbore.The characteristic rheological properties of the foam allow its injection into the formation at a range of flow rates,foam qualities,and shear stress to achieve the flooding and the blocking of a variety of fractured carbonate formations,and the change of the wettability of the matrix,which is a desirable behavior in a huff and puff process,as reported in a previous publication about a successful pilot test of this foam.
基金the financial support from JPTT project (No.JPTT-1146)
文摘This paper presents an experimental study of a novel K-Cor sandwich structure rein- forced with partially-cured Z-pins. The influence of pultrusion processing parameters on Z-pins characteristics was studied and the effect of Z-pins on mechanical properties was disclosed. Differential scanning calorimetry (DSC) and optical microscopy (OM) methods were employed to determine the curing degree of as-prepared Z-pins and observe the implanted Z-pins in the K-Cor structure. These partially-cured Z-pins were treated with a stronger bonding link between face sheets and the foam core by means of a hot-press process, thereby decreasing burrs and cracking defects when the Z-pins were implanted into the Rohacell foam core. The results of the out-of-plane tensile tests and the climbing drum peel (CDP) tests showed that K-Cor structures exhibited superior mechanical performance as compared to X-Cor and blank foam core. The observed results of failure modes revealed that an effective bonding link between the foam core and face sheets that was provided from partially-cured Z-pins contributed to the enhanced mechan- ical performances of K-Cor sandwich structures.
基金supported by the National Natural Science Foundation of China(Nos.22175123,52122302,and 51991351)the 111 Project(No.B20001)Fundamental Research Funds for the Central Universities,and Open and Innovative Fund of Hubei Three Gorges Laboratory(Nos.2022LF2021 and SC213011).
文摘Bio-based polyurethane foam has attracted increasing attentions due to eco-friendliness and fossil feedstock issues.However,the inherent flammability limits its application in different fields.Herein,we demonstrate a green bio-based flame-retardant system to fabricate polyurethane foam composite with durable flame retardancy,smoke suppression,and thermal insulation property.In this system,the green bio-based polyol(VED)with good reactivity and compatibility plays a role of flame retardant and EG acts as a synergistic filler.As a result,the LOI value of foam composite increased to 30.5 vol.%and it achieved a V-0 rating in the UL-94 vertical burning test.Additionally,the peak heat release rate(pHRR)and the total smoke production(TSP)decreased by 66.1%and 63.4%,respectively.Furthermore,the foam composite maintained durable flame retardancy after accelerated thermal aging test,whose thermal-insulating property was maintained even after being treated in high-humidity environment with 85%R.H.for a week.This work provides a facile strategy for durable flame retardancy and long-term thermal insulation performance,and creates opportunities for the practical applications of bio-based foam composites.
基金supported by the Important National Science and Technology Specific Project of China (Grant No.2008ZX05009-004-01)the Scientific and Technological Innovation Research Team Program of Heilongjiang Education Department (Grant No.2009td08)
文摘The technology of hot composite foam displacement refers to the injection of high-temperature flue gas and foaming and stabilizing agent into wells with a certain concentration, and after meeting the formation water, a composite foam system is formed in the reservoir. This foam displacement technology involves thermal function and so is related to nitrogen, carbon dioxide and foam flooding characteristics. After analyzing seepage flow law of hot composite foam system, seepage flow experiment of composite foam under high pressure was conducted, and seepage flow ability of hot composite foam in porous media was investigated. In the experiment, surfactant HY-3 was chosen as the foaming agent and hot flue gas was chosen as the foaming gas, and high-pressure hot foaming apparatus was employed in experiments. The experimental results indicate that the surfactant HY-3 could form stable foam in porous media, and the foam has strong ability of plugging. It is concluded that the sealing performance of foam is improved with increasing permeability and resistance coefficient and with incresing injection rate and foam strength. After foam injection, sealing characteristics of heterogeneous cores is better than that of homogeneous cores. The foam pressure has a process of transmission in porous media. In this process, with the increase of injection volume, pressure from the inlet to the outlet increases gradually, which indicates that stable foam has been formed inside the core.
基金supported by A*STAR under the AME YIRG Grant(No.A20E6c0099)AME IAF-PP Grant(No.A1896a0034)。
文摘In this study,functionally graded foam made of Inconel 625 superalloy was successfully produced using the template replication method,with open-cell polyurethane foams as a precursor.The products have a similar pore morphology as the templates and adjacent layers were successfully sintered together by particle bonding.Sound absorption experiments on graded metallic foams reveal that the sound absorption at particular frequency ranges can be improved by various permutations of foam layers.For graded foam of two distinct pore sizes,a mathematical equation was proposed to predict the location of the intersection point of the sound absorption curves,thereby aiding in graded foam design.An increase in sound absorption coefficients by resonance-like effects can be introduced before the intersection points by placing the foam layer of smaller pore size nearer to the sound source.The sound absorption performances can be further customized when the thickness proportion of the pore sizes is changed and when the number of distinct pore sizes used is increased.The sound absorption performance at lower frequencies is generally boosted by resonance-like effects when the layer of foam with the largest pore size is placed furthest from the sound source.Given the same composition of foam with a fixed thickness proportion of pore sizes,one can introduce resonance-like effects to improve the sound absorption performance compared to other permutations while possibly satisfying weight requirements in practical applications.This study provides valuable insights and mathematical guidelines in the design and manufacturing of functionally graded metallic foam for specific applications.