Foam-cored sandwich materials have been widely used in the civil engineering due to their advantages such as lightweight,high strength,and excellent anti-corrosion ability. However,the interfacial bonding strength of ...Foam-cored sandwich materials have been widely used in the civil engineering due to their advantages such as lightweight,high strength,and excellent anti-corrosion ability. However,the interfacial bonding strength of foamcored sandwich materials is weakened at elevated temperatures. In practice,the effect of high temperature cannot be ignored,because the composites and foams are sensitive to the change of temperature in the environment. In this study,a series of single-leg bending beams were tested at different temperatures to evaluate the influences of high temperatures on Mode Ⅰ/Ⅱ mixed interfacial fracture of foam core sandwich materials. The temperature was from29 ℃ to 90 ℃,covered the glass transition temperature of composites and foam core,respectively. The Mode Ⅰ/Ⅱ mixed interfacial crack prorogation and its corresponding interfacial strain energy release rate were summarized.展开更多
The open-cell Al foam core sandwiches(AFCSs) were successfully fabricated by using a specially designed Zn-Al-Cu based filler alloy via vibration aided liquid phase bonding method.The effects of the vibration on the...The open-cell Al foam core sandwiches(AFCSs) were successfully fabricated by using a specially designed Zn-Al-Cu based filler alloy via vibration aided liquid phase bonding method.The effects of the vibration on the bonding seam were investigated and the bonding strength between Al foam core and solid Al alloy face sheet was tested by shearing tests.The results show that vibration can significantly improve the quality of the bonding and the shearing strength of the bonding seam,which implies that this joining method has a good potential in practical applications.展开更多
Structural capacitors are composite structures that function as energy storage capacitors. An electric double-layer capacitor with a composite structure using a solid polymer electrolyte matrix with a glass fiber fabr...Structural capacitors are composite structures that function as energy storage capacitors. An electric double-layer capacitor with a composite structure using a solid polymer electrolyte matrix with a glass fiber fabric separator has recently been developed. In the present study, new foam core sandwich structure is adopted and the effect of the degree of cure is experimentally investigated. Carbon fiber fabric cloth is used as electrodes, and the polystyrene foam core is used as separator. Material system of Poly Ethylene Glycol DiGlycidyl Ether (PEGDGE) with Lithium bisTriFluoromethane Sulfonyl Imide (LiTFSI) and hardener of TriEthylene TetrAmine (TETA) is adopted as ion-conductive polymer matrix. The effect of the cure degree is experimentally investigated by using 100% cure degree, 70% cure degree and 0% cure degree specimens. As a result, the polystyrene foam-core sandwich system is proved to be effective, but the capacitance is not enough because of the lack of surface area of the carbon fiber electrodes. As the remained TETA impedes the movement of Li<sup>+</sup> cation in the solid polymer by means of the segment-motion-assisted diffusion process, the low degree of cure causes small capacitance with this material system.展开更多
This paper presents an experimental study of a novel K-Cor sandwich structure rein- forced with partially-cured Z-pins. The influence of pultrusion processing parameters on Z-pins characteristics was studied and the e...This paper presents an experimental study of a novel K-Cor sandwich structure rein- forced with partially-cured Z-pins. The influence of pultrusion processing parameters on Z-pins characteristics was studied and the effect of Z-pins on mechanical properties was disclosed. Differential scanning calorimetry (DSC) and optical microscopy (OM) methods were employed to determine the curing degree of as-prepared Z-pins and observe the implanted Z-pins in the K-Cor structure. These partially-cured Z-pins were treated with a stronger bonding link between face sheets and the foam core by means of a hot-press process, thereby decreasing burrs and cracking defects when the Z-pins were implanted into the Rohacell foam core. The results of the out-of-plane tensile tests and the climbing drum peel (CDP) tests showed that K-Cor structures exhibited superior mechanical performance as compared to X-Cor and blank foam core. The observed results of failure modes revealed that an effective bonding link between the foam core and face sheets that was provided from partially-cured Z-pins contributed to the enhanced mechan- ical performances of K-Cor sandwich structures.展开更多
基金supported in part by the National Key Research and Development Program of China(No.2017YFC0703001)the National Natural Science Foundation of China(No. 51678297).
文摘Foam-cored sandwich materials have been widely used in the civil engineering due to their advantages such as lightweight,high strength,and excellent anti-corrosion ability. However,the interfacial bonding strength of foamcored sandwich materials is weakened at elevated temperatures. In practice,the effect of high temperature cannot be ignored,because the composites and foams are sensitive to the change of temperature in the environment. In this study,a series of single-leg bending beams were tested at different temperatures to evaluate the influences of high temperatures on Mode Ⅰ/Ⅱ mixed interfacial fracture of foam core sandwich materials. The temperature was from29 ℃ to 90 ℃,covered the glass transition temperature of composites and foam core,respectively. The Mode Ⅰ/Ⅱ mixed interfacial crack prorogation and its corresponding interfacial strain energy release rate were summarized.
基金support provided by the National Program on Key Basic Research Project of China (No. 2006CB601201)supports from the Research Fund for Doctoral Program of Higher Education of China (No. 200802941010)+1 种基金the Natural Science Foundation of Hohai University (No. 2008428011)the Scientific Research Startup Fund of Hohai University(No. 2084140801109)
文摘The open-cell Al foam core sandwiches(AFCSs) were successfully fabricated by using a specially designed Zn-Al-Cu based filler alloy via vibration aided liquid phase bonding method.The effects of the vibration on the bonding seam were investigated and the bonding strength between Al foam core and solid Al alloy face sheet was tested by shearing tests.The results show that vibration can significantly improve the quality of the bonding and the shearing strength of the bonding seam,which implies that this joining method has a good potential in practical applications.
文摘Structural capacitors are composite structures that function as energy storage capacitors. An electric double-layer capacitor with a composite structure using a solid polymer electrolyte matrix with a glass fiber fabric separator has recently been developed. In the present study, new foam core sandwich structure is adopted and the effect of the degree of cure is experimentally investigated. Carbon fiber fabric cloth is used as electrodes, and the polystyrene foam core is used as separator. Material system of Poly Ethylene Glycol DiGlycidyl Ether (PEGDGE) with Lithium bisTriFluoromethane Sulfonyl Imide (LiTFSI) and hardener of TriEthylene TetrAmine (TETA) is adopted as ion-conductive polymer matrix. The effect of the cure degree is experimentally investigated by using 100% cure degree, 70% cure degree and 0% cure degree specimens. As a result, the polystyrene foam-core sandwich system is proved to be effective, but the capacitance is not enough because of the lack of surface area of the carbon fiber electrodes. As the remained TETA impedes the movement of Li<sup>+</sup> cation in the solid polymer by means of the segment-motion-assisted diffusion process, the low degree of cure causes small capacitance with this material system.
基金the financial support from JPTT project (No.JPTT-1146)
文摘This paper presents an experimental study of a novel K-Cor sandwich structure rein- forced with partially-cured Z-pins. The influence of pultrusion processing parameters on Z-pins characteristics was studied and the effect of Z-pins on mechanical properties was disclosed. Differential scanning calorimetry (DSC) and optical microscopy (OM) methods were employed to determine the curing degree of as-prepared Z-pins and observe the implanted Z-pins in the K-Cor structure. These partially-cured Z-pins were treated with a stronger bonding link between face sheets and the foam core by means of a hot-press process, thereby decreasing burrs and cracking defects when the Z-pins were implanted into the Rohacell foam core. The results of the out-of-plane tensile tests and the climbing drum peel (CDP) tests showed that K-Cor structures exhibited superior mechanical performance as compared to X-Cor and blank foam core. The observed results of failure modes revealed that an effective bonding link between the foam core and face sheets that was provided from partially-cured Z-pins contributed to the enhanced mechan- ical performances of K-Cor sandwich structures.