Surfactant foam stability gets a lot of interest while posing a significant obstacle to many industrial operations.One of the viable solutions for addressing gas mobility concerns and boosting reservoir fluid sweep ef...Surfactant foam stability gets a lot of interest while posing a significant obstacle to many industrial operations.One of the viable solutions for addressing gas mobility concerns and boosting reservoir fluid sweep efficiency during solvent-based enhanced heavy oil recovery processes is foam formation.The synergistic effect of nanoparticles and surfactants in a porous reservoir media can help create a more durable and sturdier foam.This study aims to see how well a combination of the nanoparticles(NPs)and surfactant can generate foam for controlling gas mobility and improving oil recovery.This research looked at the effects of silicon and aluminum oxide nanoparticles on the bulk and dynamic stability of sodium dodecyl surfactant(SDS)-foam in the presence and absence of oil.Normalized foam height,liquid drainage,half-decay life,nanoparticle deposition,and bubble size distribution of the generated foams with time were used to assess static foam stability in the bulk phase,while dynamic stability was studied in the micromodel.To understand the processes of foam stabilization by nanoparticles,the microscopic images of foam and the shape of bubbles were examined.When nanoparticles were applied in foamability testing in bulk and dynamic phase,the foam generation and stability were improved by 23%and 17%,respectively.In comparison to surfactant alone,adding nanoparticles to surfactant solutions leads to a more significant pressure drop of 17.34 psi for SiO_(2)and 14.86 psi for Al_(2)O_(3)NPs and,as a result,a higher reduction in gas mobility which ultimately assists in enhancing oil recovery.展开更多
基金This research is funded by graduate studies of the University of Regina,Petroleum Technology Research Centre(PTRC),and MITACS.
文摘Surfactant foam stability gets a lot of interest while posing a significant obstacle to many industrial operations.One of the viable solutions for addressing gas mobility concerns and boosting reservoir fluid sweep efficiency during solvent-based enhanced heavy oil recovery processes is foam formation.The synergistic effect of nanoparticles and surfactants in a porous reservoir media can help create a more durable and sturdier foam.This study aims to see how well a combination of the nanoparticles(NPs)and surfactant can generate foam for controlling gas mobility and improving oil recovery.This research looked at the effects of silicon and aluminum oxide nanoparticles on the bulk and dynamic stability of sodium dodecyl surfactant(SDS)-foam in the presence and absence of oil.Normalized foam height,liquid drainage,half-decay life,nanoparticle deposition,and bubble size distribution of the generated foams with time were used to assess static foam stability in the bulk phase,while dynamic stability was studied in the micromodel.To understand the processes of foam stabilization by nanoparticles,the microscopic images of foam and the shape of bubbles were examined.When nanoparticles were applied in foamability testing in bulk and dynamic phase,the foam generation and stability were improved by 23%and 17%,respectively.In comparison to surfactant alone,adding nanoparticles to surfactant solutions leads to a more significant pressure drop of 17.34 psi for SiO_(2)and 14.86 psi for Al_(2)O_(3)NPs and,as a result,a higher reduction in gas mobility which ultimately assists in enhancing oil recovery.