Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.T...Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.The great variations of the above factors can affect the effectiveness of N2 foam in EOR continuously in complex formations,which is rarely involved in previous relevant studies.This paper presents an experimental study of foam flow in porous media by injecting pre-generated N2 foam into a sand pack under the conditions of considering a wide range of gas and liquid velocities and surfactant concentrations.The results show that in a wide range of gas and liquid velocities,the pressure gradient contours are L-shaped near the coordinate axes,but V-shaped in other regions.And the surfactant concentration is a strong factor influencing the trend of pressure gradient contours.Foam flow resistance is very sensitive to the surfactant concentration in both the high-and low-foam quality regime,especially when the surfactant concentration is less than CMC.The foam quality is an important variable to the flow resistance obtained.There exists a transition point from low-to high-quality regime in a particular flow system,where has the maximum flow resistance,the corresponding foam quality is called transition foam quality,which increases as the surfactant concentration increases.The results can add to our knowledge base of foam rheology in porous media,and can provide a strong basis for the field application of foams.展开更多
Based on the mathematical model of one dimension transient flow of the polymer foam in porous media, the numerical calculation method of the flow mentioned above by using the finite difference method is given. Through...Based on the mathematical model of one dimension transient flow of the polymer foam in porous media, the numerical calculation method of the flow mentioned above by using the finite difference method is given. Through the experiments of one dimension transient flow of HPAM (Hydrolytic Polyacrylamide) foam in the artificial sandstone core, the HPAM foam generation and coalescence coefficient of the mathematical model mentioned above are determined. The profiles of the liquid phase saturation, the pressure drop and the number density of one dimension transient flow of HPAM foam with the dimensionless time in artificial sandstone core are numerically calculated and analyzed by using the numerical calculation method.展开更多
A sloshing mitigation concept taking advantage of floating layers of solid foam elements is proposed in the present study. Physical experiments are carried out in a liquid tank to investigate the hydrodynamic mechanis...A sloshing mitigation concept taking advantage of floating layers of solid foam elements is proposed in the present study. Physical experiments are carried out in a liquid tank to investigate the hydrodynamic mechanism of this concept. Effects of the foam-layer thickness, excitation amplitude, and excitation frequency on the sloshing properties are analyzed in detail. It is found that the floating layers of solid foam elements do not evidently affect the fundamental natural sloshing frequency of the liquid tank evidently among the considered cases. At the resonant condition, the maximum wave height and dynamic pressure are greatly reduced as the foam-layer thickness increases. Higher-order pressure components on the tank side gradually vanish with the increase of the foam-layer thickness. Cases with different excitation amplitudes are also analyzed. The phenomenon is observed when the wave breaking in the tank can be suppressed by solid foam elements.展开更多
基金financially supported by National Natural Science Foundation of China(No.U20B6003).
文摘Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.The great variations of the above factors can affect the effectiveness of N2 foam in EOR continuously in complex formations,which is rarely involved in previous relevant studies.This paper presents an experimental study of foam flow in porous media by injecting pre-generated N2 foam into a sand pack under the conditions of considering a wide range of gas and liquid velocities and surfactant concentrations.The results show that in a wide range of gas and liquid velocities,the pressure gradient contours are L-shaped near the coordinate axes,but V-shaped in other regions.And the surfactant concentration is a strong factor influencing the trend of pressure gradient contours.Foam flow resistance is very sensitive to the surfactant concentration in both the high-and low-foam quality regime,especially when the surfactant concentration is less than CMC.The foam quality is an important variable to the flow resistance obtained.There exists a transition point from low-to high-quality regime in a particular flow system,where has the maximum flow resistance,the corresponding foam quality is called transition foam quality,which increases as the surfactant concentration increases.The results can add to our knowledge base of foam rheology in porous media,and can provide a strong basis for the field application of foams.
文摘Based on the mathematical model of one dimension transient flow of the polymer foam in porous media, the numerical calculation method of the flow mentioned above by using the finite difference method is given. Through the experiments of one dimension transient flow of HPAM (Hydrolytic Polyacrylamide) foam in the artificial sandstone core, the HPAM foam generation and coalescence coefficient of the mathematical model mentioned above are determined. The profiles of the liquid phase saturation, the pressure drop and the number density of one dimension transient flow of HPAM foam with the dimensionless time in artificial sandstone core are numerically calculated and analyzed by using the numerical calculation method.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51709038,51679036 and51739010)the Project funded by China Postdoctoral Science Foundation(Grant No.2018M630289)the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2016490111)
文摘A sloshing mitigation concept taking advantage of floating layers of solid foam elements is proposed in the present study. Physical experiments are carried out in a liquid tank to investigate the hydrodynamic mechanism of this concept. Effects of the foam-layer thickness, excitation amplitude, and excitation frequency on the sloshing properties are analyzed in detail. It is found that the floating layers of solid foam elements do not evidently affect the fundamental natural sloshing frequency of the liquid tank evidently among the considered cases. At the resonant condition, the maximum wave height and dynamic pressure are greatly reduced as the foam-layer thickness increases. Higher-order pressure components on the tank side gradually vanish with the increase of the foam-layer thickness. Cases with different excitation amplitudes are also analyzed. The phenomenon is observed when the wave breaking in the tank can be suppressed by solid foam elements.