The effects of cell size on the quasi-static and dynamic compressive properties of open cell aluminum foams produced by infiltrating process were studied experimentally. The quasi-static and dynamic compressive tests ...The effects of cell size on the quasi-static and dynamic compressive properties of open cell aluminum foams produced by infiltrating process were studied experimentally. The quasi-static and dynamic compressive tests were carried out on MTS 810 system and SHPB(split Hopkinson pressure bar) respectively. It is found that the elastic moduli and compressive strengths of the studied aluminum foam are not only dependent on the relative density but also dependent on the cell size of the foam under both quasi-static loading and dynamic loading. The foams studied show a significant strain rate sensitivity, the flow strength can be improved as much as 112%, and the cell size also has a sound influence on the strain rate sensitivity of the foams. The foams of middle cell size exhibit the highest elastic modulus, the highest flow strength and the most significant strain rate sensitivity.展开更多
In this study, a design of experiments (DoE) approach was used to develop a PLA open-cell foam morphology using the compression molding technique. The effect of three molding parameters (foaming time, mold opening tem...In this study, a design of experiments (DoE) approach was used to develop a PLA open-cell foam morphology using the compression molding technique. The effect of three molding parameters (foaming time, mold opening temperature, and weight concentration of the ADA blowing agent) on the cellular structure was investigated. A regression equation relating the average cell size to the above three processing parameters was developed from the DoE and the analysis of variance (ANOVA) was used to find the best dimensional fitting parameters based on the experimental data. With the help of the DoE technique, we were able to develop various foam morphologies having different average cell size distribution levels, which is important in the development of open-cell PLA scaffolds for bone regeneration for which the control of cell morphology is crucial for osteoblasts proliferation. For example, at a constant ADA weight concentration of 5.95 wt%, we were able to develop a narrow average cell size distribution ranging between 275 and 300 μm by varying the mold opening temperature between 106°C and 112°C, while maintaining the foaming time constant at 8 min, or by varying the mold foaming time between 6 and 11 min and maintaining the mold opening temperature at 109°C.展开更多
Microstructural features including pore size distribution, cell walls and phase compositions of magnesium oxychloride cement foams(MOCF) with various MgO powders and water mixture ratios were studied. Their infl uen...Microstructural features including pore size distribution, cell walls and phase compositions of magnesium oxychloride cement foams(MOCF) with various MgO powders and water mixture ratios were studied. Their infl uences on compressive strength, water absorption and resistance of MOCF were also discussed in detail. The experimental results indicated that moderate and slight excess MgO powders(MgO/MgCl2 molar ratios from 5.1 to 7) were beneficial to the formation of excellent microstructure of MOCF, but increasing water contents(H2O/MgO mass ratios from 0.9 to 1.29) might result in opposite conclusions. The microstructure of MOCF produced with moderate and slight excess MgO powders could enhance the compressive strength, while serious excess MgO powders addition(MgO/MgCl2 molar ratios = 9) would destroy the cell wall structures, and therefore decrease the strength of the system. Although MOCF produced with excess MgO powders could decrease the water absorption, its softening coefficient was lower than that of the material produced with moderate MgO powders. This might be due to the instability of phase 5, the volume expansion and cracking of cell walls as immersed the sample into water.展开更多
The effect of dry density,water-cement ratio,the addition of fly ash,and sand content on the porosity and pore distribution of foamed concrete is investigated.Digital microscopy and Image J software are employed to ex...The effect of dry density,water-cement ratio,the addition of fly ash,and sand content on the porosity and pore distribution of foamed concrete is investigated.Digital microscopy and Image J software are employed to examine the landscape of pores with different sizes.Based on the Balshin empirical formula,a mathematical model is established to quantitatively predict the relationship between the pore structures and the compressive strength of foamed concrete.The results well demonstrate that there is a significant correlation between the modified formula and empirical parameters.展开更多
Light-weight magnesium -aluminate spinel materi- als were prepared by foaming-gel process with polyalumi- nium chloride (PAC) as gel. Effect of solid loading in initial slurry on microstructure, porosity, pore size ...Light-weight magnesium -aluminate spinel materi- als were prepared by foaming-gel process with polyalumi- nium chloride (PAC) as gel. Effect of solid loading in initial slurry on microstructure, porosity, pore size distri- bution, thermal conductivity and mechanical properties was investigated. The results show that the bulk density of the light-weight magnesium -aluminate spinel mate- rials is in the range of O. 7 1.2 g cm-3 ; pore size distribution curves show single-peak characteristics and the mean pore size is in the range of 30. 83 - 61.37 μm ; with the increase of solid loading, the linear shrinkage of the green body during firing and the permanent change in dimensions on heating at l 600 ℃ for 3 h de- crease, but the bulk density increases, the mechanical properties increase obviously; the maximum compressive strength and bending strength reach 35. 25 MPa and 9. 92 MPa, respectively, while the bulk density is 1. 16 g · cm ; and the thermal conductivity at 1 000 ℃ tea- ches 0. 371 W · m-1 . K-1 while the bulk density is O. 7 -3 g · cm展开更多
Water blown rigid polyurethane foams with different functionality were prepared. The physical properties of rigid foams were measured with rotational viscometer (NDJ-1 ), universal testing machine (Instron3365), s...Water blown rigid polyurethane foams with different functionality were prepared. The physical properties of rigid foams were measured with rotational viscometer (NDJ-1 ), universal testing machine (Instron3365), scanning electron microscope (SEM) and differential scanning calorimeter (DSC). The results show that the viscosity of polyether polyol increases exponentially from 62 mPa s to 6 000 mPa s with the increase of functionality from 2 to 5.6, respectively. The overall density of foam increases slightly from 31.7 kg/m^3 to 37.4 kg/m^3 with increasing functionality while core density exhibited little difference. Compressive strength of foam shows the similar behavior with density except for 2-functional sample. At the same time, dimensional stability becomes better with increasing functionality except for 5.6-functional foam that has worse stability than 4.8-functional foam. From the SEM results, the functionality is not an important factor in determining distribution of cell size of foam. According to the results of thermal analysis, the glass transition temperature (T) shifts to a higher temperature from 128.9 ℃ to 166.3 ℃ for the 2 to 5.6 functional foam, respectively.展开更多
Well-dispersed fiber suspension is the precondition of good paper formation. Compared with cellulosic fibers, synthetic fibers are prone to flocculate because of their long length and hydrophobic nature, resulting in ...Well-dispersed fiber suspension is the precondition of good paper formation. Compared with cellulosic fibers, synthetic fibers are prone to flocculate because of their long length and hydrophobic nature, resulting in poor paper formation. To solve this problem, dispersants and extremely low forming consistency are typically adopted during the traditional wet-forming process, which cause a large amount of water consumption and treatment cost. Therefore, increasing forming consistency without compromising paper formation remains a challenge for papermakers. In this work, foam forming was adopted to disperse polyimide fibers (PI) with high forming consistency. The results showed that the formation index of handsheets increased when the bubble size and distribution became small and narrow. Compared with traditional wet-forming process with the same consistency (0.4%), the formation index of handsheets by foam forming increased by approximately 100% when C8 alkyl glucoside (APG08) concentration reached 16 g/L. Notably, forming consistency could increase by eight times while keeping the same level of paper formation. Overall, foam forming exhibits great advantages in dispersing long fiber and reducing water consumption and environmental pressure, and has potential applications in specialty paper made of long fibers.展开更多
基金Project(90205018) supported by the National Natural Science Foundation of China
文摘The effects of cell size on the quasi-static and dynamic compressive properties of open cell aluminum foams produced by infiltrating process were studied experimentally. The quasi-static and dynamic compressive tests were carried out on MTS 810 system and SHPB(split Hopkinson pressure bar) respectively. It is found that the elastic moduli and compressive strengths of the studied aluminum foam are not only dependent on the relative density but also dependent on the cell size of the foam under both quasi-static loading and dynamic loading. The foams studied show a significant strain rate sensitivity, the flow strength can be improved as much as 112%, and the cell size also has a sound influence on the strain rate sensitivity of the foams. The foams of middle cell size exhibit the highest elastic modulus, the highest flow strength and the most significant strain rate sensitivity.
文摘In this study, a design of experiments (DoE) approach was used to develop a PLA open-cell foam morphology using the compression molding technique. The effect of three molding parameters (foaming time, mold opening temperature, and weight concentration of the ADA blowing agent) on the cellular structure was investigated. A regression equation relating the average cell size to the above three processing parameters was developed from the DoE and the analysis of variance (ANOVA) was used to find the best dimensional fitting parameters based on the experimental data. With the help of the DoE technique, we were able to develop various foam morphologies having different average cell size distribution levels, which is important in the development of open-cell PLA scaffolds for bone regeneration for which the control of cell morphology is crucial for osteoblasts proliferation. For example, at a constant ADA weight concentration of 5.95 wt%, we were able to develop a narrow average cell size distribution ranging between 275 and 300 μm by varying the mold opening temperature between 106°C and 112°C, while maintaining the foaming time constant at 8 min, or by varying the mold foaming time between 6 and 11 min and maintaining the mold opening temperature at 109°C.
基金Funded by the National Natural Science Foundation of China(No.51478370)the EPSRC-NSFC Joint Research Projec(No.51461135005)
文摘Microstructural features including pore size distribution, cell walls and phase compositions of magnesium oxychloride cement foams(MOCF) with various MgO powders and water mixture ratios were studied. Their infl uences on compressive strength, water absorption and resistance of MOCF were also discussed in detail. The experimental results indicated that moderate and slight excess MgO powders(MgO/MgCl2 molar ratios from 5.1 to 7) were beneficial to the formation of excellent microstructure of MOCF, but increasing water contents(H2O/MgO mass ratios from 0.9 to 1.29) might result in opposite conclusions. The microstructure of MOCF produced with moderate and slight excess MgO powders could enhance the compressive strength, while serious excess MgO powders addition(MgO/MgCl2 molar ratios = 9) would destroy the cell wall structures, and therefore decrease the strength of the system. Although MOCF produced with excess MgO powders could decrease the water absorption, its softening coefficient was lower than that of the material produced with moderate MgO powders. This might be due to the instability of phase 5, the volume expansion and cracking of cell walls as immersed the sample into water.
基金supported by the National Science & Technology Pillar Program during the Twelfth Five-Year Plan Period (No.2015BAL02B02)the Jiangsu R & D Project of Modern Agriculture(No.BE2015349)the China MCC "three five" Major Science and Technology Projects(MCC,[2013]1)
文摘The effect of dry density,water-cement ratio,the addition of fly ash,and sand content on the porosity and pore distribution of foamed concrete is investigated.Digital microscopy and Image J software are employed to examine the landscape of pores with different sizes.Based on the Balshin empirical formula,a mathematical model is established to quantitatively predict the relationship between the pore structures and the compressive strength of foamed concrete.The results well demonstrate that there is a significant correlation between the modified formula and empirical parameters.
基金supported by the National Basic Research Program of China(973 Program,No.2010CB735810)
文摘Light-weight magnesium -aluminate spinel materi- als were prepared by foaming-gel process with polyalumi- nium chloride (PAC) as gel. Effect of solid loading in initial slurry on microstructure, porosity, pore size distri- bution, thermal conductivity and mechanical properties was investigated. The results show that the bulk density of the light-weight magnesium -aluminate spinel mate- rials is in the range of O. 7 1.2 g cm-3 ; pore size distribution curves show single-peak characteristics and the mean pore size is in the range of 30. 83 - 61.37 μm ; with the increase of solid loading, the linear shrinkage of the green body during firing and the permanent change in dimensions on heating at l 600 ℃ for 3 h de- crease, but the bulk density increases, the mechanical properties increase obviously; the maximum compressive strength and bending strength reach 35. 25 MPa and 9. 92 MPa, respectively, while the bulk density is 1. 16 g · cm ; and the thermal conductivity at 1 000 ℃ tea- ches 0. 371 W · m-1 . K-1 while the bulk density is O. 7 -3 g · cm
基金the Joint Research Foundation of CAS and Hebei Province,China(No.2004-015)
文摘Water blown rigid polyurethane foams with different functionality were prepared. The physical properties of rigid foams were measured with rotational viscometer (NDJ-1 ), universal testing machine (Instron3365), scanning electron microscope (SEM) and differential scanning calorimeter (DSC). The results show that the viscosity of polyether polyol increases exponentially from 62 mPa s to 6 000 mPa s with the increase of functionality from 2 to 5.6, respectively. The overall density of foam increases slightly from 31.7 kg/m^3 to 37.4 kg/m^3 with increasing functionality while core density exhibited little difference. Compressive strength of foam shows the similar behavior with density except for 2-functional sample. At the same time, dimensional stability becomes better with increasing functionality except for 5.6-functional foam that has worse stability than 4.8-functional foam. From the SEM results, the functionality is not an important factor in determining distribution of cell size of foam. According to the results of thermal analysis, the glass transition temperature (T) shifts to a higher temperature from 128.9 ℃ to 166.3 ℃ for the 2 to 5.6 functional foam, respectively.
基金funded by National Key R&D Program of China (2017YFB0308300)Shaanxi Provincial Key R&D Program (2017GY-140)Doctoral Scientific Research Foundation of Shaanxi University of Science & Technology (BJ15-12, 2018BJ-22)
文摘Well-dispersed fiber suspension is the precondition of good paper formation. Compared with cellulosic fibers, synthetic fibers are prone to flocculate because of their long length and hydrophobic nature, resulting in poor paper formation. To solve this problem, dispersants and extremely low forming consistency are typically adopted during the traditional wet-forming process, which cause a large amount of water consumption and treatment cost. Therefore, increasing forming consistency without compromising paper formation remains a challenge for papermakers. In this work, foam forming was adopted to disperse polyimide fibers (PI) with high forming consistency. The results showed that the formation index of handsheets increased when the bubble size and distribution became small and narrow. Compared with traditional wet-forming process with the same consistency (0.4%), the formation index of handsheets by foam forming increased by approximately 100% when C8 alkyl glucoside (APG08) concentration reached 16 g/L. Notably, forming consistency could increase by eight times while keeping the same level of paper formation. Overall, foam forming exhibits great advantages in dispersing long fiber and reducing water consumption and environmental pressure, and has potential applications in specialty paper made of long fibers.