A new technique, powder compact foaming process for the production of aluminumfoams has been studied in this article. According to this method, the aluminum pow-der is mixed with a powder foaming agent (TiH_2). Subseq...A new technique, powder compact foaming process for the production of aluminumfoams has been studied in this article. According to this method, the aluminum pow-der is mixed with a powder foaming agent (TiH_2). Subsequent to mixing, the powderblend is hot compacted to obtain a dense semi--finished product. Upon heating to tem-peratures within the range of the melting point, the foaming agent decomposes to evolvegas and the semi--finished product expands into a porous cellular aluminum. Foamingprocess is the key in this method. Based on experiments, the foaming characteris-tics were mainly analyzed and discussed. Experiments show that the aluminum--foamwith closed pores and a uniform cell structure of high porosity can be obtained usingthis method by adjusting the foaming parameters: the content of foaming agent andfoaming temperature.展开更多
A rotating packed bed(RPB) reactor has substantially potential for the process intensification of heterogeneous catalytic reactions. However, the scarce knowledge of the liquid–solid mass transfer in the RPB reactor ...A rotating packed bed(RPB) reactor has substantially potential for the process intensification of heterogeneous catalytic reactions. However, the scarce knowledge of the liquid–solid mass transfer in the RPB reactor is a barrier for its design and scale-up. In this work, the liquid–solid mass transfer in a RPB reactor installed with structured foam packing was experimentally studied using copper dissolution by potassium dichromate. Effects of rotational speed, liquid and gas volumetric flow rate on the liquid–solid mass transfer coefficient(kLS) have been investigated. The correlation for predicting kLSwas proposed, and the deviation between the experimental and predicted values was within±12%. The liquid–solid volumetric mass transfer coefficient(kLSaLS) ranged from 0.04–0.14 1^-1, which was approximately 5 times larger than that in the packed bed reactor. This work lays the foundation for modeling of the RPB reactor packed with structured foam packing for heterogeneous catalytic reaction.展开更多
During the Co-Cure Molding(CCM)of airfoil foam sandwich structure,it is challenging to avoid collapse of foam core at the trailing edge.Herein,an Equal Proportional Thickening(EPT)method is proposed to optimize the in...During the Co-Cure Molding(CCM)of airfoil foam sandwich structure,it is challenging to avoid collapse of foam core at the trailing edge.Herein,an Equal Proportional Thickening(EPT)method is proposed to optimize the interference of polymethacrylimide(PMI)foam core during the CCM process.Firstly,based on some basic parameters of composite skin and foam core obtained by experiments or multi-scale simulations,a thermal-curing-mechanical coupling analysis for the CCM of foam sandwich structure is performed and the results show that the maximum stress within foam core occurs at the completion of mold-closing,which tends to decrease during the subsequent CCM process.Then,the foam core is thickened by traditional equidistant-thickening method,and the simulation reveals that the foam core at the trailing edge tends to collapse because of stress concentration.Conversely,if the foam core is thickened by the proposed EPT method,the mold-closing caused collapse at the trailing edge can be effectively avoided,and a thickening ratio range of 0.6%–2.0%is obtained,which is further proved by practical verifications.Therefore,the interference design scheme proposed can ensure the molding quality and effectively reduce the scrap of molded products.展开更多
Lithium–sulfur batteries have great potential for high energy applications due to their high capacities,low cost and eco-friendliness. However, the particularly rapid capacity decay owing to the dissolution and diffu...Lithium–sulfur batteries have great potential for high energy applications due to their high capacities,low cost and eco-friendliness. However, the particularly rapid capacity decay owing to the dissolution and diffusion of polysulfide intermediate into the electrolyte still hamper their practical applications.And the reported preparation procedures to sulfur based cathode materials are often complex, and hence are rather difficult to produce at large scale. Here, we report a simple mechano-chemical sulfurization methodology in vacuum environment applying ball-milling method combined both the chemical and physical interaction for the one-pot synthesis of edge-sulfurized grapheme nanoplatelets with 3D porous foam structure as cathode materials. The optimal sample of 70%S–Gn Ps-48 h(ball-milled 48 h) obtains 13.2 wt% sulfur that chemically bonded onto the edge of Gn Ps. And the assembled batteries exhibit high initial discharge capacities of 1089 mAh/g at 0.1 C and 950 mAh/g at 0.5 C, and retain a stable discharge capacity of 776 mAh/g after 250 cycles at 0.5 C with a high Coulombic efficiency of over 98%. The excellent performance is mainly attributed to the mechano-chemical interaction between sulfur and grapheme nanoplatelets. This definitely triggers the currently extensive research in lithium–sulfur battery area.展开更多
Methylcyclohexane(MCH)serves as an ideal hydrogen carrier in hydrogen storage and transportation process.In the continuous production of hydrogen from MCH dehydrogenation,the rational design of energy-efficient cataly...Methylcyclohexane(MCH)serves as an ideal hydrogen carrier in hydrogen storage and transportation process.In the continuous production of hydrogen from MCH dehydrogenation,the rational design of energy-efficient catalytic way with good performance remains an enormous challenge.Herein,an internal electric heating(IEH)assisted mode was designed and proposed by the directly electrical-driven catalyst using the resistive heating effect.The Pt/Al2O_(3)on Fe foam(Pt/Al2O_(3)/FF)with unique threedimensional network structure was constructed.The catalysts were studied in a comprehensive way including X-ray diffraction(XRD),scanning electron microscopy(SEM)-mapping,in situ extended X-ray absorption fine structure(EXAFS),and in situ COFourier transform infrared(FTIR)measurements.It was found that the hydrogen evolution rate in IEH mode can reach up to above 2060 mmol·gPt^(−1)·min^(−1),which is 2–5 times higher than that of reported Pt based catalysts under similar reaction conditions in conventional heating(CH)mode.In combination with measurements from high-resolution infrared thermometer,the equations of heat transfer rate,and reaction heat analysis results,the Pt/Al2O_(3)/FF not only has high mass and heat transfer ability to promote catalytic performance,but also behaves as the heating component with a low thermal resistance and heat capacity offering a fast temperature response in IEH mode.In addition,the chemical adsorption and activation of MCH molecules can be efficiently facilitated by IEH mode,proved by the operando MCH-FTIR results.Therefore,the as-developed IEH mode can efficiently reduce the heat and mass transfer limitations and prominently boost the dehydrogenation performance,which has a broad application potential in hydrogen storage and other catalytic reaction processes.展开更多
文摘A new technique, powder compact foaming process for the production of aluminumfoams has been studied in this article. According to this method, the aluminum pow-der is mixed with a powder foaming agent (TiH_2). Subsequent to mixing, the powderblend is hot compacted to obtain a dense semi--finished product. Upon heating to tem-peratures within the range of the melting point, the foaming agent decomposes to evolvegas and the semi--finished product expands into a porous cellular aluminum. Foamingprocess is the key in this method. Based on experiments, the foaming characteris-tics were mainly analyzed and discussed. Experiments show that the aluminum--foamwith closed pores and a uniform cell structure of high porosity can be obtained usingthis method by adjusting the foaming parameters: the content of foaming agent andfoaming temperature.
基金supported by the National Natural Science Foundation of China(Nos.21676009 and 21725601)。
文摘A rotating packed bed(RPB) reactor has substantially potential for the process intensification of heterogeneous catalytic reactions. However, the scarce knowledge of the liquid–solid mass transfer in the RPB reactor is a barrier for its design and scale-up. In this work, the liquid–solid mass transfer in a RPB reactor installed with structured foam packing was experimentally studied using copper dissolution by potassium dichromate. Effects of rotational speed, liquid and gas volumetric flow rate on the liquid–solid mass transfer coefficient(kLS) have been investigated. The correlation for predicting kLSwas proposed, and the deviation between the experimental and predicted values was within±12%. The liquid–solid volumetric mass transfer coefficient(kLSaLS) ranged from 0.04–0.14 1^-1, which was approximately 5 times larger than that in the packed bed reactor. This work lays the foundation for modeling of the RPB reactor packed with structured foam packing for heterogeneous catalytic reaction.
基金Supported by the Harbin Aviation Industry Group Co.,Ltd and the National Natural Science Foundation of China(No.11972256).
文摘During the Co-Cure Molding(CCM)of airfoil foam sandwich structure,it is challenging to avoid collapse of foam core at the trailing edge.Herein,an Equal Proportional Thickening(EPT)method is proposed to optimize the interference of polymethacrylimide(PMI)foam core during the CCM process.Firstly,based on some basic parameters of composite skin and foam core obtained by experiments or multi-scale simulations,a thermal-curing-mechanical coupling analysis for the CCM of foam sandwich structure is performed and the results show that the maximum stress within foam core occurs at the completion of mold-closing,which tends to decrease during the subsequent CCM process.Then,the foam core is thickened by traditional equidistant-thickening method,and the simulation reveals that the foam core at the trailing edge tends to collapse because of stress concentration.Conversely,if the foam core is thickened by the proposed EPT method,the mold-closing caused collapse at the trailing edge can be effectively avoided,and a thickening ratio range of 0.6%–2.0%is obtained,which is further proved by practical verifications.Therefore,the interference design scheme proposed can ensure the molding quality and effectively reduce the scrap of molded products.
基金the Link Project of the National Natural Science Foundation of China and Guangdong Province(Grant no.U1301244)the National Natural Science Foundation of China(Grant nos.51573215,21506260)+2 种基金Guangdong Province Science&Technology Foundation(2011B050300008)Guangdong Natural Science Foundation(Grant nos.2014A030313159,2016A030313354)Guangzhou Scientific and Technological Planning Project(2014J4500002,201607010042)for financial support of this work
文摘Lithium–sulfur batteries have great potential for high energy applications due to their high capacities,low cost and eco-friendliness. However, the particularly rapid capacity decay owing to the dissolution and diffusion of polysulfide intermediate into the electrolyte still hamper their practical applications.And the reported preparation procedures to sulfur based cathode materials are often complex, and hence are rather difficult to produce at large scale. Here, we report a simple mechano-chemical sulfurization methodology in vacuum environment applying ball-milling method combined both the chemical and physical interaction for the one-pot synthesis of edge-sulfurized grapheme nanoplatelets with 3D porous foam structure as cathode materials. The optimal sample of 70%S–Gn Ps-48 h(ball-milled 48 h) obtains 13.2 wt% sulfur that chemically bonded onto the edge of Gn Ps. And the assembled batteries exhibit high initial discharge capacities of 1089 mAh/g at 0.1 C and 950 mAh/g at 0.5 C, and retain a stable discharge capacity of 776 mAh/g after 250 cycles at 0.5 C with a high Coulombic efficiency of over 98%. The excellent performance is mainly attributed to the mechano-chemical interaction between sulfur and grapheme nanoplatelets. This definitely triggers the currently extensive research in lithium–sulfur battery area.
基金the National Natural Science Foundation of China(Nos.22225807,21961132026,21878331,22021004,and 22109177)the National Key Research and Development Program(Nos.2020YFA0210903 and 2021YFA1501304)+4 种基金the PetroChina research institute of petroleum processing program(Nos.PRIKY21057 and PRIKY 21199)the Fundamental Research Funds for the Central Universities(No.2462020BJRC008)the support of Energy Internet Research Center,China University of Petroleum(Beijing),Haihe Laboratory of Sustainable Chemical Transformations(No.CYZC202105)the Beijing Synchrotron Radiation Facility(BSRF)Shanghai Synchrotron Radiation Facility(SSRF)during the XAFS measurements at the beamline of 1W1B,1W2B,and BL11B.
文摘Methylcyclohexane(MCH)serves as an ideal hydrogen carrier in hydrogen storage and transportation process.In the continuous production of hydrogen from MCH dehydrogenation,the rational design of energy-efficient catalytic way with good performance remains an enormous challenge.Herein,an internal electric heating(IEH)assisted mode was designed and proposed by the directly electrical-driven catalyst using the resistive heating effect.The Pt/Al2O_(3)on Fe foam(Pt/Al2O_(3)/FF)with unique threedimensional network structure was constructed.The catalysts were studied in a comprehensive way including X-ray diffraction(XRD),scanning electron microscopy(SEM)-mapping,in situ extended X-ray absorption fine structure(EXAFS),and in situ COFourier transform infrared(FTIR)measurements.It was found that the hydrogen evolution rate in IEH mode can reach up to above 2060 mmol·gPt^(−1)·min^(−1),which is 2–5 times higher than that of reported Pt based catalysts under similar reaction conditions in conventional heating(CH)mode.In combination with measurements from high-resolution infrared thermometer,the equations of heat transfer rate,and reaction heat analysis results,the Pt/Al2O_(3)/FF not only has high mass and heat transfer ability to promote catalytic performance,but also behaves as the heating component with a low thermal resistance and heat capacity offering a fast temperature response in IEH mode.In addition,the chemical adsorption and activation of MCH molecules can be efficiently facilitated by IEH mode,proved by the operando MCH-FTIR results.Therefore,the as-developed IEH mode can efficiently reduce the heat and mass transfer limitations and prominently boost the dehydrogenation performance,which has a broad application potential in hydrogen storage and other catalytic reaction processes.