The research reported in this paper aims at developing means of Non Destructive testing (NDT) to increase the line efficiency of pipe production in oil and natural gas pipe manufacturing plants using the Standard Allo...The research reported in this paper aims at developing means of Non Destructive testing (NDT) to increase the line efficiency of pipe production in oil and natural gas pipe manufacturing plants using the Standard Allowed Minutes (SAM) method. Existing line production stations encounter difficulties in maintaining the recommended testing speed of smaller diameter pipe, due to limitations in the Visual Inspection (VI) station. We propose to implement one additional technique which will prevent the decline of line efficiency in a pipe production factory. The range of diameters identified as a problem in this research is from 254 mm to 762 mm. Microwave techniques are expected to improve the line efficiency by increasing the production of the plant. This happens as a consequence of maintaining the production rates of the identified pipe diameters, so that they equal the production output of the larger pipe diameters. We analyze the velocity traveled by the pipe through Radiographic Testing (RT) according to the VI output (production). The RT velocity is decreased for the diameters identified above, in order to maintain quality control and cover the shortcoming of the VI. The number of pipes produced is computed during shift hours of the factory and pipe lengths of the forming department are determined. We compare the output (production) of a series of NDT line stations with and without the microwave technique for the first of the three pipe cases considered in this study, classified as perfect pipe (PP), repair pipe (RP) and scrap pipe (SP). The velocity of RT stations analyzed in the paper ranges from 50 mm/s for larger diameter pipe, and decline to 16.667 mm/s for the identified diameters. The analytical calculations of line output (production) and line efficiency demonstrate the solution of this velocity problem after the microwave technique is introduced. It demonstrates that an economical and precise methodology to extend the production capability of the pipe plant has been determined.展开更多
Based on plastic bending engineering theory and machine vision technology, the intelligent control technology for forming steel pipe with JCO process is presented in this paper. By ‘twice pre-bending method’ in the ...Based on plastic bending engineering theory and machine vision technology, the intelligent control technology for forming steel pipe with JCO process is presented in this paper. By ‘twice pre-bending method’ in the first forming step, the springback law can be obtained. With the springback law and the target angle, the exact punch displacement which determines the formed angle in each bending step is predicted. In the succedent forming steps, the bending process is carried out with the exact punch displacement by real-time revising the springback law. And the angle error in each forming step is calculated by comparing the actual formed angle with the target angle. By conducting compensation for the last angle error in the next forming step, each precise bending process step is realized. A system of intelligent control technology for forming the steel pipe was developed. A calibration method is proposed to calculate the exterior parameters of the CCD camera, in which the equilateral triangle is em-ployed as the calibrating board and only one image needs to be captured. A mathematical model, which converts the angle in the image into the actual formed angle, is derived. The experimental results showed that the ellipticity of the formed pipes was less than 1.5% and the high-quality pipes can be manufactured without the worker's operating experience by employing the in-telligent control technology.展开更多
文摘The research reported in this paper aims at developing means of Non Destructive testing (NDT) to increase the line efficiency of pipe production in oil and natural gas pipe manufacturing plants using the Standard Allowed Minutes (SAM) method. Existing line production stations encounter difficulties in maintaining the recommended testing speed of smaller diameter pipe, due to limitations in the Visual Inspection (VI) station. We propose to implement one additional technique which will prevent the decline of line efficiency in a pipe production factory. The range of diameters identified as a problem in this research is from 254 mm to 762 mm. Microwave techniques are expected to improve the line efficiency by increasing the production of the plant. This happens as a consequence of maintaining the production rates of the identified pipe diameters, so that they equal the production output of the larger pipe diameters. We analyze the velocity traveled by the pipe through Radiographic Testing (RT) according to the VI output (production). The RT velocity is decreased for the diameters identified above, in order to maintain quality control and cover the shortcoming of the VI. The number of pipes produced is computed during shift hours of the factory and pipe lengths of the forming department are determined. We compare the output (production) of a series of NDT line stations with and without the microwave technique for the first of the three pipe cases considered in this study, classified as perfect pipe (PP), repair pipe (RP) and scrap pipe (SP). The velocity of RT stations analyzed in the paper ranges from 50 mm/s for larger diameter pipe, and decline to 16.667 mm/s for the identified diameters. The analytical calculations of line output (production) and line efficiency demonstrate the solution of this velocity problem after the microwave technique is introduced. It demonstrates that an economical and precise methodology to extend the production capability of the pipe plant has been determined.
基金Supported by the National Natural Science Foundation of China (Grant No. 50805126)the Hebei Natural Science Foundation (Grant No. E2009000389)
文摘Based on plastic bending engineering theory and machine vision technology, the intelligent control technology for forming steel pipe with JCO process is presented in this paper. By ‘twice pre-bending method’ in the first forming step, the springback law can be obtained. With the springback law and the target angle, the exact punch displacement which determines the formed angle in each bending step is predicted. In the succedent forming steps, the bending process is carried out with the exact punch displacement by real-time revising the springback law. And the angle error in each forming step is calculated by comparing the actual formed angle with the target angle. By conducting compensation for the last angle error in the next forming step, each precise bending process step is realized. A system of intelligent control technology for forming the steel pipe was developed. A calibration method is proposed to calculate the exterior parameters of the CCD camera, in which the equilateral triangle is em-ployed as the calibrating board and only one image needs to be captured. A mathematical model, which converts the angle in the image into the actual formed angle, is derived. The experimental results showed that the ellipticity of the formed pipes was less than 1.5% and the high-quality pipes can be manufactured without the worker's operating experience by employing the in-telligent control technology.