A comprehensive study on the mechanical behavior of foamed metals was demonstrated.The relationship among their mechanical properties,preparation method,porosity and the structure was briefly studied as well.
This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and tw...This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and two scenarios for thermal distribution.The material properties are assessed under two conditions,i.e.,temperature dependence and temperature independence.The theoretical framework for the beams is based on the higher-order shear deformation theory,which incorporates shear deformations with higher-order polynomials.The governing equations are established from the Lagrange equations,and the beam displacement fields are approximated by the Chebyshev polynomials.Numerical simulations are performed to evaluate the effects of thermal load,slenderness,boundary condition(BC),and porosity distribution on the buckling and vibration behaviors of metal foam beams.The findings highlight the significant influence of temperature-dependent(TD)material properties on metal foam beams'buckling and vibration responses.展开更多
The quasi-static indentation behavior of sandwich beams with a metal foam core was investigated. An analytical model was developed to predict the large deflections of indention of the sandwich beams with a metal foam ...The quasi-static indentation behavior of sandwich beams with a metal foam core was investigated. An analytical model was developed to predict the large deflections of indention of the sandwich beams with a metal foam core subjected to a concentrated loading. The interaction of plastic bending and stretching in the local deformation regions of the face sheet was considered in the analytical model. Moreover, the effects of the shear strength of the foam core on the indentation behavior were discussed in detail. The finite element simulations were preformed to validate the theoretical model. Comparisons between the analytical predictions and finite element results were conducted and good agreement was achieved. The results show that the membrane force dominates indentation behavior of the sandwich beams when the maximum deflection exceeds the thickness of the face sheet.展开更多
In today’s manufacturing industries,hard competition between rival firms makes it compulsory for researchers to design lighter and cheaper machine components due to the megatrends of cost-effectiveness and anti-pollu...In today’s manufacturing industries,hard competition between rival firms makes it compulsory for researchers to design lighter and cheaper machine components due to the megatrends of cost-effectiveness and anti-pollution.At this point,aluminum syntactic foams(ASFs)are new-generation engineering composites and come into the upfront as a problem-solver.Owing to their features like low density,sufficient elongation,and perfect energy absorption ability,these advanced foams have been considerably seductive for many industrial sectors nowadays.In this study,an industrial-oriented automatic die casting technology was used for the first time to manufacture the combination of AA7075/porous expanded clay(PEC).Micro evaluations(optical and FESEM)reveal that there is a homogenous particle distribution in the foam samples,and inspections are compatible with the other ASF studies.Additionally,T6 aging heat treatment was operated on one half of the produced foams to explore the probable impact of aging on the compressive responses.Attained results show that PEC particles can be an alternative to expensive hollow spheres used in the previous works.Besides,a favorable relationship is ascertained between the aging treatment and mechanical properties such as compression strength and plateau strength.展开更多
A comprehensive study on the mechanical behavior of foamed metals was demonstrated. The relationship among their mechanical properties,preparation method,porosity and the structure was briefly studied as well.
Over the past few years a number of low cost metallic foams have been produced and used as the core of sandwich panels and net shaped parts.The main aim is to develop lightweight structures which are stiff,strong,able...Over the past few years a number of low cost metallic foams have been produced and used as the core of sandwich panels and net shaped parts.The main aim is to develop lightweight structures which are stiff,strong,able to absorb large amount of energy and cheap for application in the transport and construction industries.For example,the firewall between the engine and passenger compartment of an automobile must have adequate mechanical strength,good energy and sound absorbing properties,and adequate fire retardance.Metal foams provide all of these features,and are under serious consideration for this applications by a number of au- tomobile manufacturers(e.g.,BMW and Audi).Additional specialized applications for foam-cored sandwich panels range from heat sinks for electronic devices to crash barriers for automobiles,from the construction panels in lifts on aircraft carriers to the luggage containers of aircraft,from sound proofing walls along railway tracks and highways to acoustic absorbers in lean premixed combustion chambers.But there is a problem.Before metallic foams can find a widespread application,their basic properties must be measured,and ideally modeled as a function of microstructural details,in order to be included in a design.This work aims at reviewing the recent progress and presenting some new results on fundamental research regarding the mi- cromechanical origins of the mechanical,thermal,and acoustic properties of metallic foams.展开更多
Light weight high performance sandwich composite structures have been used extensively in various load bearing applications.Experiments have shown that the indentation significantly reduces the load bearing capacity o...Light weight high performance sandwich composite structures have been used extensively in various load bearing applications.Experiments have shown that the indentation significantly reduces the load bearing capacity of sandwiched beams.In this paper,the indentation behavior of foam core sandwich beams without considering the globally axial and flexural deformation was analyzed using the principle of virtual velocities.A concisely theoretical solution of loading capacity and denting profile was presented.The denting load was found to be proportional to the square root of the denting depth.A finite element model was established to verify the prediction of the model.The load-indentation curves and the profiles of the dented zone predicted by theoretical model and numerical simulation are in good agreement.展开更多
Applications of porous metal materials are reviewed so far. These applications deal with filtration and separation, energy absorption, electrode matrix, fluid distribution and control, heat exchangers, reaction materi...Applications of porous metal materials are reviewed so far. These applications deal with filtration and separation, energy absorption, electrode matrix, fluid distribution and control, heat exchangers, reaction materials, constructional materials, electromagnetic shielding, biomaterials and so on. All these are expected to promote the improvement of the property and structure for porous metals.展开更多
The exact analytic solution of the pure bending beam of metallic foams is given. The effects of relative density of the material on stresses and deformation are revealed with the Triantafillou and Gibson constitutive ...The exact analytic solution of the pure bending beam of metallic foams is given. The effects of relative density of the material on stresses and deformation are revealed with the Triantafillou and Gibson constitutive law (TG model) taken as the analysis basis. Several examples for individual foams are discussed, showing the importance of compressibility of the cellular materials. One of the objects of this study is to generalize Hill's solution for incompressible plasticity to the case of compressible plasticity, and a kinematics parameter is brought into the analysis so that the velocity field can be determined.展开更多
This study evaluates the performance of a model of open-cell metal foams generated by sphere functions.To this end,an electromagnetic shield constructed from the model was inserted between two horn antennas in an elec...This study evaluates the performance of a model of open-cell metal foams generated by sphere functions.To this end,an electromagnetic shield constructed from the model was inserted between two horn antennas in an electromagnetic wave propagation simulation.The foam-hole diameter in the electromagnetic shield model was varied as d=2.5 and 5.0 mm,and the frequency of the electromagnetic waves was varied from 3 to 13 GHz.In the numerical experiments of shield effectiveness,the shields with foam holes of both diameters attenuated the electromagnetic waves across the studied frequency range.The shield effectiveness was enhanced at low frequencies and in the shield with smaller hole diameter.展开更多
Exact solution of the stress and velocity fields of a cylinder tube of metallic foams under inner pressure is given in which the Triantafillou and Gibson constitutive law (TG model) for the material is taken as a ba...Exact solution of the stress and velocity fields of a cylinder tube of metallic foams under inner pressure is given in which the Triantafillou and Gibson constitutive law (TG model) for the material is taken as a basis of the calculation. The nonlinear equation is turned linear equation by introducing a kinematics parameter. The differences between the full condensed materials and the effect of the relative density are also discussed.展开更多
In the present study,the thermal performance of metal foam heat sink was numerically investigated by adopting the local thermal non-equilibrium(LTNE)model and local thermal equilibrium(LTE)model.Temperature field dist...In the present study,the thermal performance of metal foam heat sink was numerically investigated by adopting the local thermal non-equilibrium(LTNE)model and local thermal equilibrium(LTE)model.Temperature field distributions and temperature difference field distributions of solid and fluid phases were presented.Detailed thermal performance comparisons based on the LTE and LTNE models were evaluated by considering the effects of the relevant metal foam morphological and channel geometrical parameters.Results indicate that a distinct temperature difference exists between the solid and fluid phases when the LTNE effect is pronounced.The average Nusselt numbers predicted by both the LTE and LTNE models are approaching with the increase of porosity,pore density,Reynolds number,large thermal conductivity ratio,and large aspect ratio.This is attributed to the significant reduction of the interstitial convective thermal resistance between the solid and fluid phases,as a result,the LTE model can replace the LTNE model for thermal modeling in these conditions.In addition,the overall thermal performance assessment of metal foam heat sink is compared with the non-porous heat sink,and it shows that the thermal performance factor of metal foam heat sink is approximately two times of the non-porous heat sink.展开更多
Fabrication characteristics are unstable in direct foaming method. Therefore, most of near net-shape metallic foams are produced, and investigated by powder metallurgy. Direct foaming method, however, has many benefi...Fabrication characteristics are unstable in direct foaming method. Therefore, most of near net-shape metallic foams are produced, and investigated by powder metallurgy. Direct foaming method, however, has many benefits (i.e. reduce the unit cost of goods and fabrication process etc.) to fabrication of metallic foams. In this article, the fabrication characteristic of near net-shape metallic foams by direct foaming method was evaluated. Al and Plaster was used for base material and mould material respectively. Ca and TiH2 were added to molten Al as thickening and blowing agent for stable condition of bubbles. Thickening time was about 10 min with a stirring speed of 600 r/min. Foaming time was 30-120 s for evaluation of the optimum foaming condition. Amount of agent was selected by pre-experimental data. Porosity of near net-shape goods was measured by Archimedes method. On the other hand, it seems that increasing poring time and thickening agent make the poor porosity展开更多
Through theoretical analysis and finite element simulation,the low-velocity impact of rectangular foam-filled fiber metal laminate(FML)tubes is studied in this paper.According to the rigid-plastic material approximati...Through theoretical analysis and finite element simulation,the low-velocity impact of rectangular foam-filled fiber metal laminate(FML)tubes is studied in this paper.According to the rigid-plastic material approximation with modifications,simple analytical solutions are obtained for the dynamic response of rectangular foam-filled FML tubes.The numerical calculations for low-velocity impact of rectangular foam-filled FML tubes are conducted.The accuracy of analytical solutions and numerical results is verified by each other.Finally,the effects of the metal volume fraction of FMLs,the number of the metal layers in FMLs,and the foam strength on the dynamic response of foam-filled tubes are discussed through the analytical model in details.It is shown that the force increases with the increase in the metal volume fraction in FMLs,the number of the metal layers in FML,and the foam strength for the given deflection.展开更多
To determine the solutions of the well-known problem of a finite width strip with single edge crack,some results on elasto-plastic fracture analysis for metallic foams are reported.Meanwhile,in order to discuss and pu...To determine the solutions of the well-known problem of a finite width strip with single edge crack,some results on elasto-plastic fracture analysis for metallic foams are reported.Meanwhile,in order to discuss and put an insight into the nonlinear fracture analysis,the Dugdale model for plastic deformation of this configuration for metallic foams is recommended and solved.Combining the asymptotic solution with the Dugdale model and elastic solution,the stress field in the plastic zone and the size of the plastic zone are expressed as analytical forms.Based on Williams expansion method,the estimate of the scale factor is also completed and analyzed.In view of these analytical solutions,the results show the scale factor is a useful parameter for the fracture theory of metallic foams.展开更多
Heat storage properties of phase change materials(PCMs) are essential characteristics that perform a key role in thermal heat energy storage systems.The thermal properties of PCMs can be improved by developing metal f...Heat storage properties of phase change materials(PCMs) are essential characteristics that perform a key role in thermal heat energy storage systems.The thermal properties of PCMs can be improved by developing metal foam/PCM composites.The addition of metal foam in PCMs has a significant effect on the thermal characteristics of PCMs.In this paper,the heat storage properties of two different metal foam/PCM composites were experimentally examined.The behavior of paraffin in metal foam(copper and iron-nickel)/paraffin composites concerning pure paraffin at a constant heat flux of 1000 W/m^(2) in three directions simultaneously(x,y,and z) was studied.Paraffin was infiltrated into copper and iron-nickel foams to develop composite materials which resulted in enhancing the thermal conductivity of the paraffin.A comparative analysis is made on the heat storage properties of paraffin in copper and iron-nickel foams/paraffin composites.Inner temperature distribution during the phase transition process is experimentally evaluated.This comparison indicates that temperature uniformity in copper foam/paraffin composite is better than in iron-nickel foam/paraffin composite and pure paraffin at the same heat flux.Experimental results show that at heat flux of 1000 W/m^(2),the heat storage time for copper foam/paraffin composite is 20.63% of that of iron-nickel foam/paraffin composite.展开更多
The high specific capacity and low negative electrochemical potential of lithium metal anodes(LMAs),may allow the energy density threshold of Li metal batteries(LMBs)to be pushed higher.However,the existing detrimenta...The high specific capacity and low negative electrochemical potential of lithium metal anodes(LMAs),may allow the energy density threshold of Li metal batteries(LMBs)to be pushed higher.However,the existing detrimental issues,such as dendritic growth and volume expansion,have hindered the practical implementation of LMBs.Introducing three-dimensional frameworks(e.g.,copper and nickel foam),have been regarded as one of the fundamental strategies to reduce the local current density,aiming to extend the Sand'time.Nevertheless,the local environment far from the skeleton is almost the same as the typical plane Li,due to macroporous space of metal foam.Herein,we built a double-layered 3D current collector of Li alloy anchored on the metal foam,with micropores interconnected macropores,via a viable thermal infiltration and cooling strategy.Due to the excellent electronic and ionic conductivity coupled with favorable lithiophilicity,the Li alloy can effectively reduce the nucleation barrier and enhance the Li^(+)transportation rate,while the metal foam can role as the primary promotor to enlarge the surface area and buffer the dimensional variation.Synergistically,the Li composite anode with hierarchical structure of primary and secondary scaffolds realized the even deposition behavior and minimum volume expansion,outputting preeminent prolonged cycling performances under high rate.展开更多
A multi-parameter nonlinear elasto-plastic constitutive model which can fully capture the three typical features of stress-strain response, linearity, plasticity-like stress plateau and densification phases was develo...A multi-parameter nonlinear elasto-plastic constitutive model which can fully capture the three typical features of stress-strain response, linearity, plasticity-like stress plateau and densification phases was developed. The functional expression of each parameter was determined using uniaxial compression tests for aluminum alloy foams. The parameters of the model can be systematically varied to describe the effect of relative density which may be responsible for the changes in yield stress and hardening-like or softening-like behavior at various strain rates. A comparison between model predictions and experimental results of the aluminum alloy foams was provided to validate the model. It was proved to be useful in the selection of the optimal-density and energy absorption foam for a specific application at impact events.展开更多
The metal sintering approach offers a costeffective means for the mass-production of open-cell foams from a range of materials, including high-temperature steel alloys, which offer novel mechanical and acoustic proper...The metal sintering approach offers a costeffective means for the mass-production of open-cell foams from a range of materials, including high-temperature steel alloys, which offer novel mechanical and acoustic properties. In a separate experimental study, the mechanical properties of open-celled steel alloy (FeCrA1Y) foams have been characterized under uniaxial compression and shear loading. Compared to predictions from established models, a significant knockdown in material properties was observed. This knockdown was attributed to the presence of defects throughout the microstructure that result from the unique fabrication process. In the present paper, the microstructure of sintered FeCrA1Y foams was modeled by using a finite element (FE) model. In particular, microstructural variations were introduced to a base lattice, and the effects on the strength and stiffness calculated. A range of defects identified under scanning electronic microscope (SEM) imaging were considered including broken ligaments, thickness variations, and pore blockages, which are the three primary imperfections observed in sintered foams. The corresponding levels of defect present in the material were subsequently input into the FE model, with the resulting predictions correlating well with experimental data.展开更多
In order to obtain substrates with good conductive foam for high porosity foam metal materials used in the metal electrodes,the technique of electroless copper plating on the microcellular polyurethane foam with pore ...In order to obtain substrates with good conductive foam for high porosity foam metal materials used in the metal electrodes,the technique of electroless copper plating on the microcellular polyurethane foam with pore size of 0.3 mm was investigated.The main factors affecting the deposition rate such as the solution composition,temperature,pH value and adding ultrasonic were explored.The results show that the optimum process conditions are CuSO4 16 g/L,HCHO 5 mL/L,NaKC4H4O6 30 g/L,Na2EDTA 20 g/L,K4Fe(CN)6 25 mg/L,pH value of 12.5-13.0 and temperature of 40-50℃.Under these technical conditions, the process has excellent bath stability.Adding ultrasonic on the process can elevate the deposition rate of copper by 20%-30%.The foam metal material with a porosity of 92.2%and a three-dimensional network structure,was fabricated by electro-deposition after the electroless copper plating.展开更多
基金Item Sponsored by National Natural Science Foundation of China(50201003)
文摘A comprehensive study on the mechanical behavior of foamed metals was demonstrated.The relationship among their mechanical properties,preparation method,porosity and the structure was briefly studied as well.
文摘This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and two scenarios for thermal distribution.The material properties are assessed under two conditions,i.e.,temperature dependence and temperature independence.The theoretical framework for the beams is based on the higher-order shear deformation theory,which incorporates shear deformations with higher-order polynomials.The governing equations are established from the Lagrange equations,and the beam displacement fields are approximated by the Chebyshev polynomials.Numerical simulations are performed to evaluate the effects of thermal load,slenderness,boundary condition(BC),and porosity distribution on the buckling and vibration behaviors of metal foam beams.The findings highlight the significant influence of temperature-dependent(TD)material properties on metal foam beams'buckling and vibration responses.
基金Projects(11102146,11372235,11272246,11021202,11002107)supported by the National Natural Science Foundation of ChinaProject(2011CB610301)supported by the National Basic Research Program of ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘The quasi-static indentation behavior of sandwich beams with a metal foam core was investigated. An analytical model was developed to predict the large deflections of indention of the sandwich beams with a metal foam core subjected to a concentrated loading. The interaction of plastic bending and stretching in the local deformation regions of the face sheet was considered in the analytical model. Moreover, the effects of the shear strength of the foam core on the indentation behavior were discussed in detail. The finite element simulations were preformed to validate the theoretical model. Comparisons between the analytical predictions and finite element results were conducted and good agreement was achieved. The results show that the membrane force dominates indentation behavior of the sandwich beams when the maximum deflection exceeds the thickness of the face sheet.
文摘In today’s manufacturing industries,hard competition between rival firms makes it compulsory for researchers to design lighter and cheaper machine components due to the megatrends of cost-effectiveness and anti-pollution.At this point,aluminum syntactic foams(ASFs)are new-generation engineering composites and come into the upfront as a problem-solver.Owing to their features like low density,sufficient elongation,and perfect energy absorption ability,these advanced foams have been considerably seductive for many industrial sectors nowadays.In this study,an industrial-oriented automatic die casting technology was used for the first time to manufacture the combination of AA7075/porous expanded clay(PEC).Micro evaluations(optical and FESEM)reveal that there is a homogenous particle distribution in the foam samples,and inspections are compatible with the other ASF studies.Additionally,T6 aging heat treatment was operated on one half of the produced foams to explore the probable impact of aging on the compressive responses.Attained results show that PEC particles can be an alternative to expensive hollow spheres used in the previous works.Besides,a favorable relationship is ascertained between the aging treatment and mechanical properties such as compression strength and plateau strength.
基金Item Sponsored by High Technology Research Program of China(2001AA331020)
文摘A comprehensive study on the mechanical behavior of foamed metals was demonstrated. The relationship among their mechanical properties,preparation method,porosity and the structure was briefly studied as well.
文摘Over the past few years a number of low cost metallic foams have been produced and used as the core of sandwich panels and net shaped parts.The main aim is to develop lightweight structures which are stiff,strong,able to absorb large amount of energy and cheap for application in the transport and construction industries.For example,the firewall between the engine and passenger compartment of an automobile must have adequate mechanical strength,good energy and sound absorbing properties,and adequate fire retardance.Metal foams provide all of these features,and are under serious consideration for this applications by a number of au- tomobile manufacturers(e.g.,BMW and Audi).Additional specialized applications for foam-cored sandwich panels range from heat sinks for electronic devices to crash barriers for automobiles,from the construction panels in lifts on aircraft carriers to the luggage containers of aircraft,from sound proofing walls along railway tracks and highways to acoustic absorbers in lean premixed combustion chambers.But there is a problem.Before metallic foams can find a widespread application,their basic properties must be measured,and ideally modeled as a function of microstructural details,in order to be included in a design.This work aims at reviewing the recent progress and presenting some new results on fundamental research regarding the mi- cromechanical origins of the mechanical,thermal,and acoustic properties of metallic foams.
基金supported by the National Natural Science Foundation of China(90916026,10532020 and 10672156)the Chinese Academy of Sciences(KJCX2-EW-L03)
文摘Light weight high performance sandwich composite structures have been used extensively in various load bearing applications.Experiments have shown that the indentation significantly reduces the load bearing capacity of sandwiched beams.In this paper,the indentation behavior of foam core sandwich beams without considering the globally axial and flexural deformation was analyzed using the principle of virtual velocities.A concisely theoretical solution of loading capacity and denting profile was presented.The denting load was found to be proportional to the square root of the denting depth.A finite element model was established to verify the prediction of the model.The load-indentation curves and the profiles of the dented zone predicted by theoretical model and numerical simulation are in good agreement.
文摘Applications of porous metal materials are reviewed so far. These applications deal with filtration and separation, energy absorption, electrode matrix, fluid distribution and control, heat exchangers, reaction materials, constructional materials, electromagnetic shielding, biomaterials and so on. All these are expected to promote the improvement of the property and structure for porous metals.
文摘The exact analytic solution of the pure bending beam of metallic foams is given. The effects of relative density of the material on stresses and deformation are revealed with the Triantafillou and Gibson constitutive law (TG model) taken as the analysis basis. Several examples for individual foams are discussed, showing the importance of compressibility of the cellular materials. One of the objects of this study is to generalize Hill's solution for incompressible plasticity to the case of compressible plasticity, and a kinematics parameter is brought into the analysis so that the velocity field can be determined.
文摘This study evaluates the performance of a model of open-cell metal foams generated by sphere functions.To this end,an electromagnetic shield constructed from the model was inserted between two horn antennas in an electromagnetic wave propagation simulation.The foam-hole diameter in the electromagnetic shield model was varied as d=2.5 and 5.0 mm,and the frequency of the electromagnetic waves was varied from 3 to 13 GHz.In the numerical experiments of shield effectiveness,the shields with foam holes of both diameters attenuated the electromagnetic waves across the studied frequency range.The shield effectiveness was enhanced at low frequencies and in the shield with smaller hole diameter.
基金the National Natural Science Foundation of China(10672022)
文摘Exact solution of the stress and velocity fields of a cylinder tube of metallic foams under inner pressure is given in which the Triantafillou and Gibson constitutive law (TG model) for the material is taken as a basis of the calculation. The nonlinear equation is turned linear equation by introducing a kinematics parameter. The differences between the full condensed materials and the effect of the relative density are also discussed.
基金supported by the National Natural Science Foundation of China(No.51676208 and No.51906257)the fundamental research funds of central universities(No.18CX07012A and No.19CX05002A)the Major Program of the Natural Science Foundation of Shandong Province(No.ZR2019ZD11).
文摘In the present study,the thermal performance of metal foam heat sink was numerically investigated by adopting the local thermal non-equilibrium(LTNE)model and local thermal equilibrium(LTE)model.Temperature field distributions and temperature difference field distributions of solid and fluid phases were presented.Detailed thermal performance comparisons based on the LTE and LTNE models were evaluated by considering the effects of the relevant metal foam morphological and channel geometrical parameters.Results indicate that a distinct temperature difference exists between the solid and fluid phases when the LTNE effect is pronounced.The average Nusselt numbers predicted by both the LTE and LTNE models are approaching with the increase of porosity,pore density,Reynolds number,large thermal conductivity ratio,and large aspect ratio.This is attributed to the significant reduction of the interstitial convective thermal resistance between the solid and fluid phases,as a result,the LTE model can replace the LTNE model for thermal modeling in these conditions.In addition,the overall thermal performance assessment of metal foam heat sink is compared with the non-porous heat sink,and it shows that the thermal performance factor of metal foam heat sink is approximately two times of the non-porous heat sink.
文摘Fabrication characteristics are unstable in direct foaming method. Therefore, most of near net-shape metallic foams are produced, and investigated by powder metallurgy. Direct foaming method, however, has many benefits (i.e. reduce the unit cost of goods and fabrication process etc.) to fabrication of metallic foams. In this article, the fabrication characteristic of near net-shape metallic foams by direct foaming method was evaluated. Al and Plaster was used for base material and mould material respectively. Ca and TiH2 were added to molten Al as thickening and blowing agent for stable condition of bubbles. Thickening time was about 10 min with a stirring speed of 600 r/min. Foaming time was 30-120 s for evaluation of the optimum foaming condition. Amount of agent was selected by pre-experimental data. Porosity of near net-shape goods was measured by Archimedes method. On the other hand, it seems that increasing poring time and thickening agent make the poor porosity
基金the National Natural Science Foundation of China(Nos.11872291 and11972281)the Jiangsu Key Laboratory of Engineering Mechanics,Southeast University+2 种基金the Fundamental Research Funds for the Central Universities(No.LEM21B01)the Key Laboratory of Impact and Safety Engineering(Ningbo University),Ministry of Education(No.cj202002)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2020JM-034)。
文摘Through theoretical analysis and finite element simulation,the low-velocity impact of rectangular foam-filled fiber metal laminate(FML)tubes is studied in this paper.According to the rigid-plastic material approximation with modifications,simple analytical solutions are obtained for the dynamic response of rectangular foam-filled FML tubes.The numerical calculations for low-velocity impact of rectangular foam-filled FML tubes are conducted.The accuracy of analytical solutions and numerical results is verified by each other.Finally,the effects of the metal volume fraction of FMLs,the number of the metal layers in FMLs,and the foam strength on the dynamic response of foam-filled tubes are discussed through the analytical model in details.It is shown that the force increases with the increase in the metal volume fraction in FMLs,the number of the metal layers in FML,and the foam strength for the given deflection.
基金Supported by the National Natural Science Foundation of China(10972035)
文摘To determine the solutions of the well-known problem of a finite width strip with single edge crack,some results on elasto-plastic fracture analysis for metallic foams are reported.Meanwhile,in order to discuss and put an insight into the nonlinear fracture analysis,the Dugdale model for plastic deformation of this configuration for metallic foams is recommended and solved.Combining the asymptotic solution with the Dugdale model and elastic solution,the stress field in the plastic zone and the size of the plastic zone are expressed as analytical forms.Based on Williams expansion method,the estimate of the scale factor is also completed and analyzed.In view of these analytical solutions,the results show the scale factor is a useful parameter for the fracture theory of metallic foams.
文摘Heat storage properties of phase change materials(PCMs) are essential characteristics that perform a key role in thermal heat energy storage systems.The thermal properties of PCMs can be improved by developing metal foam/PCM composites.The addition of metal foam in PCMs has a significant effect on the thermal characteristics of PCMs.In this paper,the heat storage properties of two different metal foam/PCM composites were experimentally examined.The behavior of paraffin in metal foam(copper and iron-nickel)/paraffin composites concerning pure paraffin at a constant heat flux of 1000 W/m^(2) in three directions simultaneously(x,y,and z) was studied.Paraffin was infiltrated into copper and iron-nickel foams to develop composite materials which resulted in enhancing the thermal conductivity of the paraffin.A comparative analysis is made on the heat storage properties of paraffin in copper and iron-nickel foams/paraffin composites.Inner temperature distribution during the phase transition process is experimentally evaluated.This comparison indicates that temperature uniformity in copper foam/paraffin composite is better than in iron-nickel foam/paraffin composite and pure paraffin at the same heat flux.Experimental results show that at heat flux of 1000 W/m^(2),the heat storage time for copper foam/paraffin composite is 20.63% of that of iron-nickel foam/paraffin composite.
基金supported by Huzhou Natural Science Foundation Project(Nos.2022YZ04 and 2022YZ21)S&T Special Program of Huzhou(No.2023GZ03)National Natural Science Foundation of China(No.52172184)。
文摘The high specific capacity and low negative electrochemical potential of lithium metal anodes(LMAs),may allow the energy density threshold of Li metal batteries(LMBs)to be pushed higher.However,the existing detrimental issues,such as dendritic growth and volume expansion,have hindered the practical implementation of LMBs.Introducing three-dimensional frameworks(e.g.,copper and nickel foam),have been regarded as one of the fundamental strategies to reduce the local current density,aiming to extend the Sand'time.Nevertheless,the local environment far from the skeleton is almost the same as the typical plane Li,due to macroporous space of metal foam.Herein,we built a double-layered 3D current collector of Li alloy anchored on the metal foam,with micropores interconnected macropores,via a viable thermal infiltration and cooling strategy.Due to the excellent electronic and ionic conductivity coupled with favorable lithiophilicity,the Li alloy can effectively reduce the nucleation barrier and enhance the Li^(+)transportation rate,while the metal foam can role as the primary promotor to enlarge the surface area and buffer the dimensional variation.Synergistically,the Li composite anode with hierarchical structure of primary and secondary scaffolds realized the even deposition behavior and minimum volume expansion,outputting preeminent prolonged cycling performances under high rate.
基金Projects (90716005, 10802055, 10972153) supported by the National Natural Science Foundation of ChinaProject (2007021005) supported by the Natural Science Foundation of Shanxi Province, China+2 种基金Project supported by the Postdoctoral Science Foundation of ChinaProject supported by the Homecomings Foundation, ChinaProject supported by the Top Young Academic Leaders of Higher Learning Institutions of Shanxi, China
文摘A multi-parameter nonlinear elasto-plastic constitutive model which can fully capture the three typical features of stress-strain response, linearity, plasticity-like stress plateau and densification phases was developed. The functional expression of each parameter was determined using uniaxial compression tests for aluminum alloy foams. The parameters of the model can be systematically varied to describe the effect of relative density which may be responsible for the changes in yield stress and hardening-like or softening-like behavior at various strain rates. A comparison between model predictions and experimental results of the aluminum alloy foams was provided to validate the model. It was proved to be useful in the selection of the optimal-density and energy absorption foam for a specific application at impact events.
基金The project supported by the National Basic Research Program of China(2006CB601202)the National Natural Science Foundation of China(10328203,10572111,10632060)+1 种基金the National 111 Project of China(B06024)the US 0ffice of Naval Research(N000140210117).
文摘The metal sintering approach offers a costeffective means for the mass-production of open-cell foams from a range of materials, including high-temperature steel alloys, which offer novel mechanical and acoustic properties. In a separate experimental study, the mechanical properties of open-celled steel alloy (FeCrA1Y) foams have been characterized under uniaxial compression and shear loading. Compared to predictions from established models, a significant knockdown in material properties was observed. This knockdown was attributed to the presence of defects throughout the microstructure that result from the unique fabrication process. In the present paper, the microstructure of sintered FeCrA1Y foams was modeled by using a finite element (FE) model. In particular, microstructural variations were introduced to a base lattice, and the effects on the strength and stiffness calculated. A range of defects identified under scanning electronic microscope (SEM) imaging were considered including broken ligaments, thickness variations, and pore blockages, which are the three primary imperfections observed in sintered foams. The corresponding levels of defect present in the material were subsequently input into the FE model, with the resulting predictions correlating well with experimental data.
文摘In order to obtain substrates with good conductive foam for high porosity foam metal materials used in the metal electrodes,the technique of electroless copper plating on the microcellular polyurethane foam with pore size of 0.3 mm was investigated.The main factors affecting the deposition rate such as the solution composition,temperature,pH value and adding ultrasonic were explored.The results show that the optimum process conditions are CuSO4 16 g/L,HCHO 5 mL/L,NaKC4H4O6 30 g/L,Na2EDTA 20 g/L,K4Fe(CN)6 25 mg/L,pH value of 12.5-13.0 and temperature of 40-50℃.Under these technical conditions, the process has excellent bath stability.Adding ultrasonic on the process can elevate the deposition rate of copper by 20%-30%.The foam metal material with a porosity of 92.2%and a three-dimensional network structure,was fabricated by electro-deposition after the electroless copper plating.