期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Research on Optimization Design of Deep Profile Control Injection Scheme in Block S
1
作者 Meinan Wang Shaopeng Wang +2 位作者 Wei Zhang Xiaoqi Chen Junting Zhang 《Open Journal of Applied Sciences》 2023年第11期2047-2054,共8页
In view of the rapid decline rate of oil production and gradual increase of water cut in oil wells in Block S, based on the determination of the formula of foam profile control agent, the optimization study of foam pr... In view of the rapid decline rate of oil production and gradual increase of water cut in oil wells in Block S, based on the determination of the formula of foam profile control agent, the optimization study of foam profile control injection scheme was carried out. Petrel software is used to establish a facies controlled geological model based on stochastic modeling method in Block S, and CMG software is used for numerical simulation to design 7 sets of foam profile control prediction schemes. Dynamic data and numerical simulation methods are used to optimize foam injection mode and injection cycle. By simulating and calculating, the optimal injection method of alternating gas and liquid injection and the optimal plan with an injection period of 2 months were selected. Through the calculation results of various research plans, it can be seen that the water content of the optimal plan has decreased significantly, and the oil production rate has increased significantly, in order to slow down production decline, control water content rise, extend the economic recovery period of the oilfield, and achieve the goal of improving oil recovery. 展开更多
关键词 Foam Profile control Numerical Simulation Injection Method Injection Cycle
下载PDF
Gas/water foams stabilized with a newly developed anionic surfactant for gas mobility control applications 被引量:2
2
作者 Mohammed AAlmobarky Zuhair AlYousif David Schechter 《Petroleum Science》 SCIE CAS CSCD 2020年第4期1025-1036,共12页
Carbon dioxide(CO2) flooding is one of the most globally used EOR processes to enhance oil recovery.However,the low gas viscosity and density result in gas channeling and gravity override which lead to poor sweep effi... Carbon dioxide(CO2) flooding is one of the most globally used EOR processes to enhance oil recovery.However,the low gas viscosity and density result in gas channeling and gravity override which lead to poor sweep efficiency.Foam application for mobility control is a promising technology to increase the gas viscosity,lower the mobility and improve the sweep efficiency in the reservoir.Foam is generated in the reservoir by co-injection of surfactant solutions and gas.Although there are many surfactants that can be used for such purpose,their performance with supercritical CO2(ScCO2) is weak causing poor or loss of mobility control.This experimental study evaluates a newly developed surfactant(CNF) that was introduced for ScCO2 mobility control in comparison with a common foaming agent,anionic alpha olefin sulfonate(AOS) surfactant.Experimental work was divided into three stages:foam static tests,interfacial tension measurements,and foam dynamic tests.Both surfactants were investigated at different conditions.In general,results show that both surfactants are good foaming agents to reduce the mobility of ScCO2 with better performance of CNF surfactant.Shaking tests in the presence of crude oil show that the foam life for CNF extends to more than 24 h but less than that for AOS.Moreover,CNF features lower critical micelle concentration(CMC),higher adsorption,and smaller area/molecule at the liquid-air interface.Furthermore,entering,spreading,and bridging coefficients indicate that CNF surfactant produces very stable foam with light crude oil in both deionized and saline water,whereas AOS was stable only in deionized water.At all conditions for mobility reduction evaluation,CNF exhibits stronger flow resistance,higher foam viscosity,and higher mobility reduction factor than that of AOS surfactant.In addition,CNF and ScCO2 simultaneous injection produced 8.83% higher oil recovery than that of the baseline experiment and 7.87% higher than that of AOS.Pressure drop profiles for foam flooding using CNF was slightly higher than that of AOS indicating that CNF is better in terms of foam-oil tolerance which resulted in higher oil recovery. 展开更多
关键词 SUPERCRITICAL CO2 foam Foam mobility control Foam flooding Enhanced oil recovery(EOR) Foam assisting CO2 EOR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部