One of the biggest obstacles to the application of orbital angular momentum(OAM)in the microwave field is its divergence problem.This paper presents a full analysis of generating and focusing OAM waves using original ...One of the biggest obstacles to the application of orbital angular momentum(OAM)in the microwave field is its divergence problem.This paper presents a full analysis of generating and focusing OAM waves using original and improved Fabry-Perot(F-P)cavities.Utilizing combination of microstrip antenna and original F-P cavity,the gain of the OAM antenna is enhanced from 4.0 dBi to 9.3 dBi and the corresponding divergence angle is decreased from 41to 24.To further improve the performance of the OAM antenna,the improved F-P cavity is introduced.The simulated results show that the gain is further enhanced to 12.0 dBi and the divergence angle is further decreased to be 15.展开更多
A metal-insulator-metal(MIM)-based arc-shaped resonator coupled with a rectangular stub(MARS) structure is proposed. This structure can generate two tunable Fano resonances originating from two different mechanisms. T...A metal-insulator-metal(MIM)-based arc-shaped resonator coupled with a rectangular stub(MARS) structure is proposed. This structure can generate two tunable Fano resonances originating from two different mechanisms. The structure has the advantage of being sensitive to the refractive index, and this feature makes it favorable for application in various microsensors. The relationship between the structural parameters and Fano resonance is researched using the finite element method(FEM) based on the software COMSOL Multiphysics 5.4. The simulation reveals that the sensitivity reaches1900 nm/refractive index unit(RIU), and the figure of merit(FOM) is 23.75.展开更多
基金This work was supported by the National Natural Science Foundation(Grant Nos.61571298,61671416 and 61571289)the Natural Science Foundation of Shanghai(Grant No.17ZR1414300).
文摘One of the biggest obstacles to the application of orbital angular momentum(OAM)in the microwave field is its divergence problem.This paper presents a full analysis of generating and focusing OAM waves using original and improved Fabry-Perot(F-P)cavities.Utilizing combination of microstrip antenna and original F-P cavity,the gain of the OAM antenna is enhanced from 4.0 dBi to 9.3 dBi and the corresponding divergence angle is decreased from 41to 24.To further improve the performance of the OAM antenna,the improved F-P cavity is introduced.The simulated results show that the gain is further enhanced to 12.0 dBi and the divergence angle is further decreased to be 15.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 61875250 and 61975189)the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LD21F050001 and Y21F040001)+3 种基金the Key Research Project by Department of Water Resources of Zhejiang Province (Grant No. RA2101)the Key Research and Development Project of Zhejiang Province (Grant No. 2021C03019)the Key R&D Projects of Shanxi Province (Grant Nos. 201903D421032 and 01804D131038)the Scientific Research Foundation of Zhejiang University of Water Resources and Electric Power (Grant No. xky2022032)。
文摘A metal-insulator-metal(MIM)-based arc-shaped resonator coupled with a rectangular stub(MARS) structure is proposed. This structure can generate two tunable Fano resonances originating from two different mechanisms. The structure has the advantage of being sensitive to the refractive index, and this feature makes it favorable for application in various microsensors. The relationship between the structural parameters and Fano resonance is researched using the finite element method(FEM) based on the software COMSOL Multiphysics 5.4. The simulation reveals that the sensitivity reaches1900 nm/refractive index unit(RIU), and the figure of merit(FOM) is 23.75.