Needle chlorosis(NC)in Pinus taeda L.systems in Brazil becomes more frequent after second and third harvest rotation cycles.In a study to identify factors contributing to yellowing needle chorosis(YNC),trees were grow...Needle chlorosis(NC)in Pinus taeda L.systems in Brazil becomes more frequent after second and third harvest rotation cycles.In a study to identify factors contributing to yellowing needle chorosis(YNC),trees were grown in soils originating from contrasting parent materials,and soils and needles(whole,green and chlorotic portions)from 1-and 2-year-old branches and the first and second needle flush release at four sites with YNC on P.taeda were analyzed for various elements and properties.All soils had very low base levels(Ca^(2+),Mg^(2+)and K^(+))and P,suggesting a possible lack of multiple elements.YNC symptoms started at needle tips,then extended toward the needle base with time.First flush needles had longer portions with YNC than second flush needles did.Needles from the lower crown also had more symptoms along their length than those higher in the canopy.Symptoms were similar to those reported for Mg.In chlorotic portions,Mg and Ca concentrations were well below critical values;in particular,Mg levels were only one third of the critical value of 0.3 g kg^(-1).Collectively,results suggest that Mg deficiency is the primary reason for NC of P.taeda in various parent soils in Brazil.展开更多
Young leaves are conventionally used in the analysis to study the nutrient status of evergreen plants and their responses to environmental changes, but the role of old leaves remains poorly understood. We selected two...Young leaves are conventionally used in the analysis to study the nutrient status of evergreen plants and their responses to environmental changes, but the role of old leaves remains poorly understood. We selected two stand types in 31-year-old Chinese fir(Cunninghamia lanceolata) plantations with similar soil conditions but different stand densities, to test the hypothesis that nitrogen(N) concentration of old leaves and twigs is more sensitive to stand density than that of young ones. Leaves and twigs were sampled and sorted into young(one-year-old) and old(two-and three-year-old) groups. Significant differences in N concentration and carbon: nitrogen ratio between the low-density stand and high-density stand were only found in the old leaves and twigs but not in the young ones.Although the N resorption efficiency did not vary significantly with stand density, the annual N resorption rates were increased in old leaves and relatively young twigs at high stand density. These results show the potential use of old tissues in the nutrient analysis in Chinese fir plantations. Testing the generality of these results could improve the use of foliar analysis as an indicator of nutrient status and environmental changes in evergreen tree species.展开更多
基金the National council for scientific and technological development(CNPq)and Higher Education Personnel Improvement Coordination(CAPES)。
文摘Needle chlorosis(NC)in Pinus taeda L.systems in Brazil becomes more frequent after second and third harvest rotation cycles.In a study to identify factors contributing to yellowing needle chorosis(YNC),trees were grown in soils originating from contrasting parent materials,and soils and needles(whole,green and chlorotic portions)from 1-and 2-year-old branches and the first and second needle flush release at four sites with YNC on P.taeda were analyzed for various elements and properties.All soils had very low base levels(Ca^(2+),Mg^(2+)and K^(+))and P,suggesting a possible lack of multiple elements.YNC symptoms started at needle tips,then extended toward the needle base with time.First flush needles had longer portions with YNC than second flush needles did.Needles from the lower crown also had more symptoms along their length than those higher in the canopy.Symptoms were similar to those reported for Mg.In chlorotic portions,Mg and Ca concentrations were well below critical values;in particular,Mg levels were only one third of the critical value of 0.3 g kg^(-1).Collectively,results suggest that Mg deficiency is the primary reason for NC of P.taeda in various parent soils in Brazil.
基金supported by the NSFC Projects of International Cooperation and Exchanges(31210103920)the National Key Research and Development Program(2016YFD0600202)+1 种基金the Gan-Po Distinguished Researcher Programthe Project of Jiangxi Provincial Department of Science and Technology(20144BBB70005)
文摘Young leaves are conventionally used in the analysis to study the nutrient status of evergreen plants and their responses to environmental changes, but the role of old leaves remains poorly understood. We selected two stand types in 31-year-old Chinese fir(Cunninghamia lanceolata) plantations with similar soil conditions but different stand densities, to test the hypothesis that nitrogen(N) concentration of old leaves and twigs is more sensitive to stand density than that of young ones. Leaves and twigs were sampled and sorted into young(one-year-old) and old(two-and three-year-old) groups. Significant differences in N concentration and carbon: nitrogen ratio between the low-density stand and high-density stand were only found in the old leaves and twigs but not in the young ones.Although the N resorption efficiency did not vary significantly with stand density, the annual N resorption rates were increased in old leaves and relatively young twigs at high stand density. These results show the potential use of old tissues in the nutrient analysis in Chinese fir plantations. Testing the generality of these results could improve the use of foliar analysis as an indicator of nutrient status and environmental changes in evergreen tree species.