A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses the...A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses these problems by proposing a modified polyrotaxane(mPR)-based solid polymer electrolyte(SPE)design that simultaneously mitigates solvent-related problems and improves conductivity.mPR-SPE exhibits high ion conductivity(2.8×10^(−3)S cm^(−1)at 25℃)through aligned ion conduction pathways and provides electrode protection ability through hydrophobic chain dispersion.Integrating this mPR-SPE into solid-state LOBs resulted in stable potentials over 300 cycles.In situ Raman spectroscopy reveals the presence of an LiO_(2)intermediate alongside Li_(2)O_(2)during oxygen reactions.Ex situ X-ray diffraction confirm the ability of the SPE to hinder the permeation of oxygen and moisture,as demonstrated by the air permeability tests.The present study suggests that maintaining a low residual solvent while achieving high ionic conductivity is crucial for restricting the sub-reactions of solid-state LOBs.展开更多
Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using t...Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions.展开更多
Metamaterials are defined as artificially designed micro-architectures with unusual physical properties,including optical,electromagnetic,mechanical,and thermal characteristics.This study investigates the compressive ...Metamaterials are defined as artificially designed micro-architectures with unusual physical properties,including optical,electromagnetic,mechanical,and thermal characteristics.This study investigates the compressive mechanical and heat transfer properties of AlSi10Mg gradient metamaterials fabricated by Laser Powder Bed Fusion(LPBF).The morphology of the AlSi10Mg metamaterials was examined using an ultrahigh-resolution microscope.Quasi-static uniaxial compression tests were conducted at room temperature,with deformation behavior captured through camera recordings.The findings indicate that the proposed gradient metamaterial exhibits superior compressive strength properties and energy absorption capacity.The Gradient-SplitP structure demonstrated better compressive performance compared to other strut-based structures,including Gradient-Gyroid and Gradient-Lidinoid structures.With an apparent density of 0.796,the Gradient-SplitP structure exhibited an outstanding energy absorption capacity,reaching an impressive 23.57 MJ/m^(3).In addition,heat conductivity tests were performed to assess the thermal resistance of these structures with different cell configurations.The gradient metamaterials exhibited higher thermal resistance and lower thermal conductivity.Consequently,the designed gradient metamaterials can be considered valuable in various applications,such as thermal management,load-bearing,and energy absorption components.展开更多
The prevalence of unilateral deafness(SSD)or asymmetric hearing loss(AHL)among patients with hearing impairments ranges from 7.2%to 15.0%,indicating a relatively significant proportion.However,these individuals often ...The prevalence of unilateral deafness(SSD)or asymmetric hearing loss(AHL)among patients with hearing impairments ranges from 7.2%to 15.0%,indicating a relatively significant proportion.However,these individuals often overlook their hearing loss,resulting in delayed or inadequate treatment.This oversight can lead to a lack of binaural summation and squelch effect,as well as the head shadow effect,which can significantly impact their speech recognition and sound localization abilities,especially in noisy environments.Recently,a groundbreaking Sound Bite™Pinyin® Bone Conduction Hearing Aid(HA)device has been has been introduced as a viable alternative to traditional percutaneous stimulation hearing assistance devices.This innovative device harnesses bone conduction technology to convey sound vibrations directly to the inner ear via the bones of the jaw and skull,effectively bypassing the air conduction pathway that is commonly compromised in individuals with hearing loss.This report details the evaluation and adjustment process of a HA device worn by a 31-year-old female patient who suffers from a congenital ossicular chain deformity in her right ear,while maintaining normal hearing in her left ear.The report comprehensively covers the hearing thresholds of the 31-year-old female patient on the day of fitting the hearing aid and one month later.It also presents assessments of the hearing aid’s performance through the Abbreviated Profile of Hearing Aid Benefit(APHAB)questionnaire,conducted three days after adjustment,one month later,and one year later.Furthermore,the report details the evaluation of the patient’s sound localization ability,comparing her performance before and after wearing the hearing aid device.Additionally,it includes measurements of her speech recognition ability for monosyllabic words and Yang Yang Ge words,which are specific tests in the Chinese language,conducted two years after the initial fitting of the hearing aid.The discovery that bone-anchored hearing devices can significantly enhance hearing thresholds in patients with unilateral conductive hearing loss represents a significant milestone.These devices not only improve speech recognition ability but also enhance sound localization in noisy environments.This improvement is accompanied by a high level of subjective satisfaction among patients,indicating a positive impact on their overall quality of life.展开更多
The case report presented in this edition by Mu et al.The report presents a case of atrial septal defect(ASD)associated with electrocardiographic changes,noting that the crochetage sign resolved after Selective His Bu...The case report presented in this edition by Mu et al.The report presents a case of atrial septal defect(ASD)associated with electrocardiographic changes,noting that the crochetage sign resolved after Selective His Bundle Pacing(S-HBP)without requiring surgical closure.The mechanisms behind the appearance and resolution of the crochetage sign remain unclear.The authors observed the dis-appearance of the crochetage sign post-S-HBP,suggesting a possible correlation between these specific R waves and the cardiac conduction system.This editorial aims to explore various types of ASD and their relationship with the cardiac con-duction system,highlighting the diagnostic significance of the crochetage sign in ASD.展开更多
The paper proposes an approximate solution to the classical (parabolic) multidimensional 2D and 3D heat conduction equation for a 5 × 5 cm aluminium plate and a 5 × 5 × 5 cm aluminum cube. An approximat...The paper proposes an approximate solution to the classical (parabolic) multidimensional 2D and 3D heat conduction equation for a 5 × 5 cm aluminium plate and a 5 × 5 × 5 cm aluminum cube. An approximate solution of the generalized (hyperbolic) 2D and 3D equation for the considered plate and cube is also proposed. Approximate solutions were obtained by applying calculus of variations and Euler-Lagrange equations. In order to verify the correctness of the proposed approximate solutions, they were compared with the exact solutions of parabolic and hyperbolic equations. The paper also presents the research on the influence of time parameters τ as well as the relaxation times τ ∗ to the variation of the profile of the temperature field for the considered aluminum plate and cube.展开更多
This paper derives rigorous statements concerning the propagation velocity of action potentials in axons. The authors use the Green’s function approach to approximate the action potential and find a relation between ...This paper derives rigorous statements concerning the propagation velocity of action potentials in axons. The authors use the Green’s function approach to approximate the action potential and find a relation between conduction velocity and the impulse profile. Computer simulations are used to bolster the analysis.展开更多
Background: Non-implantable bone anchored hearing devices (BCHDs) are utilized for patients with conductive or mixed hearing loss who are unsuitable for conventional hearing aids or have unresolved middle ear issues. ...Background: Non-implantable bone anchored hearing devices (BCHDs) are utilized for patients with conductive or mixed hearing loss who are unsuitable for conventional hearing aids or have unresolved middle ear issues. These devices can be surgically implanted or attached using adhesive plates, dental sticks, elastic headbands, or bone conduction spectacles. Optimal fitting of bone conduction spectacles requires appropriate frame selection and contact pressure in the temporal and mastoid areas. The ANSI S3.6 and DIN EN ISO 389-3 standards recommend a contact area of approximately 1.75 cm2 and a maximum force of 5.4 N for effective sound transmission and comfort. Methods: This study aimed to evaluate the technical fit and mechanical stability of universal bone conduction hearing spectacles compared to established systems. A Sen-Pressure 02 thin-film sensor connected to an Arduino Uno R3 board measured contact force in the temporal and mastoid areas. Several BCHDs were tested, including the Bruckhoff la belle BC D50/70, Radioear B71 headset, Radioear B71 elastic headband, Cochlear Baha SoundArc M, and Cochlear Baha elastic headband, on a PVC artificial head, with data analyzed using ANOVA and LSD post hoc tests. Results: The la belle BC D50/70 spectacles showed comparable contact force to established BCHDs, ensuring adequate sound transmission and comfort. Significant differences were observed between the systems, with the Radioear B71 headset exhibiting the highest forces. The la belle BC D50/70 had similar forces to the Radioear B71 elastic headband. Conclusion: The la belle BC D50/70 universal bone conduction hearing spectacles are a technically equivalent alternative to established BCHDs, maintaining pressure below 5.4 N. Future research should explore the impact of different contact forces on performance and comfort, and the integration of force control in modified spectacles. This study indicates that the la belle BC D50/70 is a viable alternative that meets audiological practice requirements.展开更多
It is known that Fourier’s heat equation, which is parabolic, implies an infinite velocity propagation, or, in other words, that the mechanism of heat conduction is established instantaneously under all conditions. T...It is known that Fourier’s heat equation, which is parabolic, implies an infinite velocity propagation, or, in other words, that the mechanism of heat conduction is established instantaneously under all conditions. This is unacceptable on physical grounds in spite of the fact that Fourier’s law agrees well with experiment. However, discrepancies are likely to occur when extremely short distances or extremely short time intervals are considered, as they must in some modern problems of aero-thermodynamics. Cattaneo and independently Vernotte proved that such process can be described by Heaviside’s telegraph equation. This paper shows that this fact can be derived using calculus of variations, by application of the Euler-Lagrange equation. So, we proved that the equation of heat conduction with finite velocity propagation of the thermal disturbance can be obtained as a solution to one variational problem.展开更多
The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element ...The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.展开更多
Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effec...Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effectiveness of the cooking process in sterilizing Guilin rice noodles before consumption. The model assumes that a large pot is filled with boiling water which is maintained at a constant high temperature heat resource through continuous gentle heating. And the room temperature is set as the initial temperature for the preheating process and the final temperature for the cooling process. The objective is to assess whether the cooking process achieves satisfactory sterilization results. The temperature distribution function of rice noodle with time is analytically obtained using the separation of variables method in the three-dimensional cylindrical coordinate system. Meanwhile, the thermal diffusion coefficient of Guilin rice noodles is obtained in terms of Riedel’ theory. By analyzing the elimination characteristics of Pseudomonas cocovenenans subsp. farinofermentans, this study obtains the optimal time required for effective sterilization at the core of Guilin rice noodles. The results show that the potential Pseudomonas cocovenenans subsp. farinofermentans will be completely eliminated through continuously preheating more than 31 seconds during the cooking process before consumption. This study provides a valuable reference of food safety standards in the cooking process of Guilin rice noodles, particularly in ensuring the complete inactivation of potentially harmful strains such as Pseudomonas cocovenenans subsp. farinofermentans.展开更多
Conductive polymer foam(CPF)with excellent compressibility and variable resistance has promising applications in electromagnetic interference(EMI)shielding and other integrated functions for wearable electronics.Howev...Conductive polymer foam(CPF)with excellent compressibility and variable resistance has promising applications in electromagnetic interference(EMI)shielding and other integrated functions for wearable electronics.However,its insufficient change amplitude of resistance with compressive strain generally leads to a degradation of shielding performance during deformation.Here,an innovative loading strategy of conductive materials on polymer foam is proposed to significantly increase the contact probability and contact area of conductive components under compression.Unique inter-skeleton conductive films are constructed by loading alginate-decorated magnetic liquid metal on the polymethacrylate films hanged between the foam skeleton(denoted as AMLM-PM foam).Traditional point contact between conductive skeletons under compression is upgraded to planar contact between conductive films.Therefore,the resistance change of AMLM-PM reaches four orders of magnitude under compression.Moreover,the inter-skeleton conductive films can improve the mechanical strength of foam,prevent the leakage of liquid metal and increase the scattering area of EM wave.AMLM-PM foam has strain-adaptive EMI shielding performance and shows compression-enhanced shielding effectiveness,solving the problem of traditional CPFs upon compression.The upgrade of resistance response also enables foam to achieve sensitive pressure sensing over a wide pressure range and compression-regulated Joule heating function.展开更多
Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung H...Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung Hwan Ko and Taek-Soo Kim’s team introduced a laserinduced phase separation and adhesion method for fabricating conductive hydrogels consisting of pure poly(3,4-ethylenedioxythiophene):polystyrene sulfonate on polymer substrates.The laser-induced phase separation and adhesion treated conducting polymers can be selectively transformed into conductive hydrogels that exhibit wet conductivities of 101.4 S cm^(−1)with a spatial resolution down to 5μm.Moreover,they maintain impedance and charge-storage capacity even after 1 h of sonication.The micropatterned electrode arrays demonstrate their potential in long-term in vivo signal recordings,highlighting their promising role in the field of bioelectronics.展开更多
The field measurements of decay rates and time lags of heat conduction in a building construction taken in Nanjing during the summer of 2001 are presented.The decay rates and time lags are calculated according to the ...The field measurements of decay rates and time lags of heat conduction in a building construction taken in Nanjing during the summer of 2001 are presented.The decay rates and time lags are calculated according to the frequency responses of the heat absorbed by the room's internal surfaces,inside surface temperature,indoor air temperature and outdoor synthetic temperature.The measured results match very well with the theoretical results of the zeroth and the first order values of the decay rates and time lags of heat conduction in the building construction,but the difference between the measured values and the theoretical values for the second order is too great to be accepted.It is therefore difficult to accurately test the second order value.However,it is still advisable to complete the analysis using the zeroth-and the first-orders values of the decay rates and time lags of heat conduction in building construction under field conditions,because in these cases the decay rates of heat conduction reach twenty which meets the requirements of engineering plans.展开更多
The perovskite-type oxide solid solution Ba0.98Ce0.8Tm0.2O3-α was prepared by high temperature solid-state reaction and its single phase character was confirmed by X-ray diffraction. The conduction property of the sa...The perovskite-type oxide solid solution Ba0.98Ce0.8Tm0.2O3-α was prepared by high temperature solid-state reaction and its single phase character was confirmed by X-ray diffraction. The conduction property of the sample was investigated by alternating current impedance spectroscopy and gas concentration cell methods under different gases atmospheres in the temperature range of 500-900 ℃. The performance of the hydrogen-air fuel cell using the sample as solid electrolyte was measured. In wet hydrogen, the sample is a pure protonic conductor with the protonic transport number of 1 in the range of 500-600 ℃, a mixed conductor of proton and electron with the protonic transport number of 0.945-0.933 above 600 ℃. In wet air, the sample is a mixed conductor of proton, oxide ion, and electronic hole. The protonic transport numbers are 0.010-0.021, and the oxide ionic transport numbers are 0.471-0.382. In hydrogen-air fuel cell, the sample is a mixed conductor of proton, oxide ion and electron, the ionic transport numbers are 0.942 0.885. The fuel cell using Ba0.98Ce0.8Tm0.2O3-α as solid electrolyte can work stably. At 900 ℃, the maximum power output density is 110,2 mW/cm2, which is higher than that of our previous cell using Ba0.98Ce0.8Tm0.2O3-α (x〈≤1, RE=Y, Eu, Ho) as solid electrolyte.展开更多
In order to simulate thermal strains, thermal stresses, residual stresses and microstructure of the steel during gas quenching by means of the numerical method, it is necessary to obtain an accurate boundary condition...In order to simulate thermal strains, thermal stresses, residual stresses and microstructure of the steel during gas quenching by means of the numerical method, it is necessary to obtain an accurate boundary condition of temperature field. The surface heat transfer coefficient is a key parameter. The explicit finite difference method, nonlinear estimation method and the experimental relation between temperature and time during gas quenching have been used to solve the inverse problem of heat conduction. The relationship between surface temperature and surface heat transfer coefficient of a cylinder has been given. The nonlinear surface heat transfer coefficients include the coupled effects between martensitic phase transformation and temperature.展开更多
A new type of hybrid finite element formulation with fundamental solutions as internal interpolation functions, named as HFS-FEM, is presented in this paper and used for solving two dimensional heat conduction problem...A new type of hybrid finite element formulation with fundamental solutions as internal interpolation functions, named as HFS-FEM, is presented in this paper and used for solving two dimensional heat conduction problems in single and multi-layer materials. In the proposed approach, a new variational functional is firstly constructed for the proposed HFS-FE model and the related existence of extremum is presented. Then, the assumed internal potential field constructed by the linear combination of fundamental solutions at points outside the elemental domain under consideration is used as the internal interpolation function, which analytically satisfies the governing equation within each element. As a result, the domain integrals in the variational functional formulation can be converted into the boundary integrals which can significantly simplify the calculation of the element stiffness matrix. The independent frame field is also introduced to guarantee the inter-element continuity and the stationary condition of the new variational functional is used to obtain the final stiffness equations. The proposed method inherits the advantages of the hybrid Trefftz finite element method (HT-FEM) over the conventional finite element method (FEM) and boundary element method (BEM), and avoids the difficulty in selecting appropriate terms of T-complete functions used in HT-FEM, as the fundamental solutions contain usually one term only, rather than a series containing infinitely many terms. Further, the fundamental solutions of a problem are, in general, easier to derive than the T-complete functions of that problem. Finally, several examples are presented to assess the performance of the proposed method, and the obtained numerical results show good numerical accuracy and remarkable insensitivity to mesh distortion.展开更多
A fast precise integration method is developed for the time integral of the hyperbolic heat conduction problem. The wave nature of heat transfer is used to analyze the structure of the matrix exponential, leading to t...A fast precise integration method is developed for the time integral of the hyperbolic heat conduction problem. The wave nature of heat transfer is used to analyze the structure of the matrix exponential, leading to the fact that the matrix exponential is sparse. The presented method employs the sparsity of the matrix exponential to improve the original precise integration method. The merits are that the proposed method is suitable for large hyperbolic heat equations and inherits the accuracy of the original version and the good computational efficiency, which are verified by two numerical examples.展开更多
A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue...A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue of the level-cut method, the difference discrete equations with fuzzy parameters are equivalently transformed into groups of interval equations. New stability analysis theory suited to fuzzy difference schemes is developed. Based on the parameter perturbation method, the interval ranges of the uncertain temperature field can be approximately predicted. Subsequently, fuzzy solutions to the original difference equations are obtained by the fuzzy resolution theorem. Two numerical examples are given to demonstrate the feasibility and efficiency of the presented method for solving both steady-state and transient heat conduction problems.展开更多
We study the thermal conduction behaviors of one-dimensional lattice models with asymmetric harmonic interparticle interactions. Normal thermal conductivity that is independent of system size is observed when the latt...We study the thermal conduction behaviors of one-dimensional lattice models with asymmetric harmonic interparticle interactions. Normal thermal conductivity that is independent of system size is observed when the lattice chains are long enough. Because only the harmonic interactions are involved, the result confirms, without ambiguity, that asymmetry plays a key role in normal thermal conduction in one-dimensional momentum conserving lattices. Both equilibrium and nonequilibrium simulations are performed to support the conclusion.展开更多
基金supported by a National Research Foundation of Korea(NRF)Grant funded by the Ministry of Science and ICT(2021R1A2C1014294,2022R1A2C3003319)the BK21 FOUR(Fostering Outstanding Universities for Research)through the National Research Foundation(NRF)of Korea.
文摘A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses these problems by proposing a modified polyrotaxane(mPR)-based solid polymer electrolyte(SPE)design that simultaneously mitigates solvent-related problems and improves conductivity.mPR-SPE exhibits high ion conductivity(2.8×10^(−3)S cm^(−1)at 25℃)through aligned ion conduction pathways and provides electrode protection ability through hydrophobic chain dispersion.Integrating this mPR-SPE into solid-state LOBs resulted in stable potentials over 300 cycles.In situ Raman spectroscopy reveals the presence of an LiO_(2)intermediate alongside Li_(2)O_(2)during oxygen reactions.Ex situ X-ray diffraction confirm the ability of the SPE to hinder the permeation of oxygen and moisture,as demonstrated by the air permeability tests.The present study suggests that maintaining a low residual solvent while achieving high ionic conductivity is crucial for restricting the sub-reactions of solid-state LOBs.
基金This work was financially supported by the Key Science and Technology Project of Longmen Laboratory(No.LMYLKT-001)Innovation and Entrepreneurship Training Program for College Students of Henan Province(No.202310464050)。
文摘Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions.
基金Supported by National Natural Science Foundation of China(Grant No.12272045)the BIT Research and Innovation Promoting Project(Grant No.2023YCXZ025).
文摘Metamaterials are defined as artificially designed micro-architectures with unusual physical properties,including optical,electromagnetic,mechanical,and thermal characteristics.This study investigates the compressive mechanical and heat transfer properties of AlSi10Mg gradient metamaterials fabricated by Laser Powder Bed Fusion(LPBF).The morphology of the AlSi10Mg metamaterials was examined using an ultrahigh-resolution microscope.Quasi-static uniaxial compression tests were conducted at room temperature,with deformation behavior captured through camera recordings.The findings indicate that the proposed gradient metamaterial exhibits superior compressive strength properties and energy absorption capacity.The Gradient-SplitP structure demonstrated better compressive performance compared to other strut-based structures,including Gradient-Gyroid and Gradient-Lidinoid structures.With an apparent density of 0.796,the Gradient-SplitP structure exhibited an outstanding energy absorption capacity,reaching an impressive 23.57 MJ/m^(3).In addition,heat conductivity tests were performed to assess the thermal resistance of these structures with different cell configurations.The gradient metamaterials exhibited higher thermal resistance and lower thermal conductivity.Consequently,the designed gradient metamaterials can be considered valuable in various applications,such as thermal management,load-bearing,and energy absorption components.
基金supported by grants from Open project National Clinical Research Center for Otolaryngologic Diseases(202200010)Capital’s Funds for Health Improvement and Research(No.2022-1-2023).
文摘The prevalence of unilateral deafness(SSD)or asymmetric hearing loss(AHL)among patients with hearing impairments ranges from 7.2%to 15.0%,indicating a relatively significant proportion.However,these individuals often overlook their hearing loss,resulting in delayed or inadequate treatment.This oversight can lead to a lack of binaural summation and squelch effect,as well as the head shadow effect,which can significantly impact their speech recognition and sound localization abilities,especially in noisy environments.Recently,a groundbreaking Sound Bite™Pinyin® Bone Conduction Hearing Aid(HA)device has been has been introduced as a viable alternative to traditional percutaneous stimulation hearing assistance devices.This innovative device harnesses bone conduction technology to convey sound vibrations directly to the inner ear via the bones of the jaw and skull,effectively bypassing the air conduction pathway that is commonly compromised in individuals with hearing loss.This report details the evaluation and adjustment process of a HA device worn by a 31-year-old female patient who suffers from a congenital ossicular chain deformity in her right ear,while maintaining normal hearing in her left ear.The report comprehensively covers the hearing thresholds of the 31-year-old female patient on the day of fitting the hearing aid and one month later.It also presents assessments of the hearing aid’s performance through the Abbreviated Profile of Hearing Aid Benefit(APHAB)questionnaire,conducted three days after adjustment,one month later,and one year later.Furthermore,the report details the evaluation of the patient’s sound localization ability,comparing her performance before and after wearing the hearing aid device.Additionally,it includes measurements of her speech recognition ability for monosyllabic words and Yang Yang Ge words,which are specific tests in the Chinese language,conducted two years after the initial fitting of the hearing aid.The discovery that bone-anchored hearing devices can significantly enhance hearing thresholds in patients with unilateral conductive hearing loss represents a significant milestone.These devices not only improve speech recognition ability but also enhance sound localization in noisy environments.This improvement is accompanied by a high level of subjective satisfaction among patients,indicating a positive impact on their overall quality of life.
基金Supported by Guangzhou Municipal Science and Technology Bureau's 2024 Basic and Applied Basic Research Topic,China,No.2024A04J4491,and No.2024A04J4254the Scientific Research Project of Guangdong Provincial Bureau of Traditional Chinese Medicine,China,No.2022ZYYJ01the Soft Science Research Program of Luohu District,Shenzhen,China,No.LX202402016.
文摘The case report presented in this edition by Mu et al.The report presents a case of atrial septal defect(ASD)associated with electrocardiographic changes,noting that the crochetage sign resolved after Selective His Bundle Pacing(S-HBP)without requiring surgical closure.The mechanisms behind the appearance and resolution of the crochetage sign remain unclear.The authors observed the dis-appearance of the crochetage sign post-S-HBP,suggesting a possible correlation between these specific R waves and the cardiac conduction system.This editorial aims to explore various types of ASD and their relationship with the cardiac con-duction system,highlighting the diagnostic significance of the crochetage sign in ASD.
文摘The paper proposes an approximate solution to the classical (parabolic) multidimensional 2D and 3D heat conduction equation for a 5 × 5 cm aluminium plate and a 5 × 5 × 5 cm aluminum cube. An approximate solution of the generalized (hyperbolic) 2D and 3D equation for the considered plate and cube is also proposed. Approximate solutions were obtained by applying calculus of variations and Euler-Lagrange equations. In order to verify the correctness of the proposed approximate solutions, they were compared with the exact solutions of parabolic and hyperbolic equations. The paper also presents the research on the influence of time parameters τ as well as the relaxation times τ ∗ to the variation of the profile of the temperature field for the considered aluminum plate and cube.
文摘This paper derives rigorous statements concerning the propagation velocity of action potentials in axons. The authors use the Green’s function approach to approximate the action potential and find a relation between conduction velocity and the impulse profile. Computer simulations are used to bolster the analysis.
文摘Background: Non-implantable bone anchored hearing devices (BCHDs) are utilized for patients with conductive or mixed hearing loss who are unsuitable for conventional hearing aids or have unresolved middle ear issues. These devices can be surgically implanted or attached using adhesive plates, dental sticks, elastic headbands, or bone conduction spectacles. Optimal fitting of bone conduction spectacles requires appropriate frame selection and contact pressure in the temporal and mastoid areas. The ANSI S3.6 and DIN EN ISO 389-3 standards recommend a contact area of approximately 1.75 cm2 and a maximum force of 5.4 N for effective sound transmission and comfort. Methods: This study aimed to evaluate the technical fit and mechanical stability of universal bone conduction hearing spectacles compared to established systems. A Sen-Pressure 02 thin-film sensor connected to an Arduino Uno R3 board measured contact force in the temporal and mastoid areas. Several BCHDs were tested, including the Bruckhoff la belle BC D50/70, Radioear B71 headset, Radioear B71 elastic headband, Cochlear Baha SoundArc M, and Cochlear Baha elastic headband, on a PVC artificial head, with data analyzed using ANOVA and LSD post hoc tests. Results: The la belle BC D50/70 spectacles showed comparable contact force to established BCHDs, ensuring adequate sound transmission and comfort. Significant differences were observed between the systems, with the Radioear B71 headset exhibiting the highest forces. The la belle BC D50/70 had similar forces to the Radioear B71 elastic headband. Conclusion: The la belle BC D50/70 universal bone conduction hearing spectacles are a technically equivalent alternative to established BCHDs, maintaining pressure below 5.4 N. Future research should explore the impact of different contact forces on performance and comfort, and the integration of force control in modified spectacles. This study indicates that the la belle BC D50/70 is a viable alternative that meets audiological practice requirements.
文摘It is known that Fourier’s heat equation, which is parabolic, implies an infinite velocity propagation, or, in other words, that the mechanism of heat conduction is established instantaneously under all conditions. This is unacceptable on physical grounds in spite of the fact that Fourier’s law agrees well with experiment. However, discrepancies are likely to occur when extremely short distances or extremely short time intervals are considered, as they must in some modern problems of aero-thermodynamics. Cattaneo and independently Vernotte proved that such process can be described by Heaviside’s telegraph equation. This paper shows that this fact can be derived using calculus of variations, by application of the Euler-Lagrange equation. So, we proved that the equation of heat conduction with finite velocity propagation of the thermal disturbance can be obtained as a solution to one variational problem.
基金Project supported by the National Natural Science Foundation of China (Nos. 12102043, 12072375U2241240)the Natural Science Foundation of Hunan Province of China (Nos. 2023JJ40698 and 2021JJ40710)。
文摘The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.
文摘Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effectiveness of the cooking process in sterilizing Guilin rice noodles before consumption. The model assumes that a large pot is filled with boiling water which is maintained at a constant high temperature heat resource through continuous gentle heating. And the room temperature is set as the initial temperature for the preheating process and the final temperature for the cooling process. The objective is to assess whether the cooking process achieves satisfactory sterilization results. The temperature distribution function of rice noodle with time is analytically obtained using the separation of variables method in the three-dimensional cylindrical coordinate system. Meanwhile, the thermal diffusion coefficient of Guilin rice noodles is obtained in terms of Riedel’ theory. By analyzing the elimination characteristics of Pseudomonas cocovenenans subsp. farinofermentans, this study obtains the optimal time required for effective sterilization at the core of Guilin rice noodles. The results show that the potential Pseudomonas cocovenenans subsp. farinofermentans will be completely eliminated through continuously preheating more than 31 seconds during the cooking process before consumption. This study provides a valuable reference of food safety standards in the cooking process of Guilin rice noodles, particularly in ensuring the complete inactivation of potentially harmful strains such as Pseudomonas cocovenenans subsp. farinofermentans.
基金supported by National Key Research and Development Program of China(2021YBF3501304)National Natural Science Foundation of China(52222106,52371171,51971008,52121001)Natural Science Foundation of Beijing Municipality(2212033).
文摘Conductive polymer foam(CPF)with excellent compressibility and variable resistance has promising applications in electromagnetic interference(EMI)shielding and other integrated functions for wearable electronics.However,its insufficient change amplitude of resistance with compressive strain generally leads to a degradation of shielding performance during deformation.Here,an innovative loading strategy of conductive materials on polymer foam is proposed to significantly increase the contact probability and contact area of conductive components under compression.Unique inter-skeleton conductive films are constructed by loading alginate-decorated magnetic liquid metal on the polymethacrylate films hanged between the foam skeleton(denoted as AMLM-PM foam).Traditional point contact between conductive skeletons under compression is upgraded to planar contact between conductive films.Therefore,the resistance change of AMLM-PM reaches four orders of magnitude under compression.Moreover,the inter-skeleton conductive films can improve the mechanical strength of foam,prevent the leakage of liquid metal and increase the scattering area of EM wave.AMLM-PM foam has strain-adaptive EMI shielding performance and shows compression-enhanced shielding effectiveness,solving the problem of traditional CPFs upon compression.The upgrade of resistance response also enables foam to achieve sensitive pressure sensing over a wide pressure range and compression-regulated Joule heating function.
基金supported by the National Natural Science Foundation of China(52475610)Zhejiang Provincial Natural Science Foundation of China(LDQ24E050001).
文摘Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung Hwan Ko and Taek-Soo Kim’s team introduced a laserinduced phase separation and adhesion method for fabricating conductive hydrogels consisting of pure poly(3,4-ethylenedioxythiophene):polystyrene sulfonate on polymer substrates.The laser-induced phase separation and adhesion treated conducting polymers can be selectively transformed into conductive hydrogels that exhibit wet conductivities of 101.4 S cm^(−1)with a spatial resolution down to 5μm.Moreover,they maintain impedance and charge-storage capacity even after 1 h of sonication.The micropatterned electrode arrays demonstrate their potential in long-term in vivo signal recordings,highlighting their promising role in the field of bioelectronics.
基金The Advance Research Projects of Southeast Universityfor the National Natural Science Foundation of China(No.XJ0701262)the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period(No.2008BAJ12B04,2008BAJ12B05,2006BAJ03A04)
文摘The field measurements of decay rates and time lags of heat conduction in a building construction taken in Nanjing during the summer of 2001 are presented.The decay rates and time lags are calculated according to the frequency responses of the heat absorbed by the room's internal surfaces,inside surface temperature,indoor air temperature and outdoor synthetic temperature.The measured results match very well with the theoretical results of the zeroth and the first order values of the decay rates and time lags of heat conduction in the building construction,but the difference between the measured values and the theoretical values for the second order is too great to be accepted.It is therefore difficult to accurately test the second order value.However,it is still advisable to complete the analysis using the zeroth-and the first-orders values of the decay rates and time lags of heat conduction in building construction under field conditions,because in these cases the decay rates of heat conduction reach twenty which meets the requirements of engineering plans.
文摘The perovskite-type oxide solid solution Ba0.98Ce0.8Tm0.2O3-α was prepared by high temperature solid-state reaction and its single phase character was confirmed by X-ray diffraction. The conduction property of the sample was investigated by alternating current impedance spectroscopy and gas concentration cell methods under different gases atmospheres in the temperature range of 500-900 ℃. The performance of the hydrogen-air fuel cell using the sample as solid electrolyte was measured. In wet hydrogen, the sample is a pure protonic conductor with the protonic transport number of 1 in the range of 500-600 ℃, a mixed conductor of proton and electron with the protonic transport number of 0.945-0.933 above 600 ℃. In wet air, the sample is a mixed conductor of proton, oxide ion, and electronic hole. The protonic transport numbers are 0.010-0.021, and the oxide ionic transport numbers are 0.471-0.382. In hydrogen-air fuel cell, the sample is a mixed conductor of proton, oxide ion and electron, the ionic transport numbers are 0.942 0.885. The fuel cell using Ba0.98Ce0.8Tm0.2O3-α as solid electrolyte can work stably. At 900 ℃, the maximum power output density is 110,2 mW/cm2, which is higher than that of our previous cell using Ba0.98Ce0.8Tm0.2O3-α (x〈≤1, RE=Y, Eu, Ho) as solid electrolyte.
基金This work has been supported by the National Natural Science Foundation of China (10162002) and Foundation for University Key Teacher by the Ministry of Education and The Yunnan Foundation of Natural Science (1999A0023M).
文摘In order to simulate thermal strains, thermal stresses, residual stresses and microstructure of the steel during gas quenching by means of the numerical method, it is necessary to obtain an accurate boundary condition of temperature field. The surface heat transfer coefficient is a key parameter. The explicit finite difference method, nonlinear estimation method and the experimental relation between temperature and time during gas quenching have been used to solve the inverse problem of heat conduction. The relationship between surface temperature and surface heat transfer coefficient of a cylinder has been given. The nonlinear surface heat transfer coefficients include the coupled effects between martensitic phase transformation and temperature.
文摘A new type of hybrid finite element formulation with fundamental solutions as internal interpolation functions, named as HFS-FEM, is presented in this paper and used for solving two dimensional heat conduction problems in single and multi-layer materials. In the proposed approach, a new variational functional is firstly constructed for the proposed HFS-FE model and the related existence of extremum is presented. Then, the assumed internal potential field constructed by the linear combination of fundamental solutions at points outside the elemental domain under consideration is used as the internal interpolation function, which analytically satisfies the governing equation within each element. As a result, the domain integrals in the variational functional formulation can be converted into the boundary integrals which can significantly simplify the calculation of the element stiffness matrix. The independent frame field is also introduced to guarantee the inter-element continuity and the stationary condition of the new variational functional is used to obtain the final stiffness equations. The proposed method inherits the advantages of the hybrid Trefftz finite element method (HT-FEM) over the conventional finite element method (FEM) and boundary element method (BEM), and avoids the difficulty in selecting appropriate terms of T-complete functions used in HT-FEM, as the fundamental solutions contain usually one term only, rather than a series containing infinitely many terms. Further, the fundamental solutions of a problem are, in general, easier to derive than the T-complete functions of that problem. Finally, several examples are presented to assess the performance of the proposed method, and the obtained numerical results show good numerical accuracy and remarkable insensitivity to mesh distortion.
基金supported by the National Natural Science Foundation of China (Nos. 10902020 and 10721062)
文摘A fast precise integration method is developed for the time integral of the hyperbolic heat conduction problem. The wave nature of heat transfer is used to analyze the structure of the matrix exponential, leading to the fact that the matrix exponential is sparse. The presented method employs the sparsity of the matrix exponential to improve the original precise integration method. The merits are that the proposed method is suitable for large hyperbolic heat equations and inherits the accuracy of the original version and the good computational efficiency, which are verified by two numerical examples.
基金supported by the National Special Fund for Major Research Instrument Development(2011YQ140145)111 Project(B07009)+1 种基金the National Natural Science Foundation of China(11002013)Defense Industrial Technology Development Program(A2120110001 and B2120110011)
文摘A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue of the level-cut method, the difference discrete equations with fuzzy parameters are equivalently transformed into groups of interval equations. New stability analysis theory suited to fuzzy difference schemes is developed. Based on the parameter perturbation method, the interval ranges of the uncertain temperature field can be approximately predicted. Subsequently, fuzzy solutions to the original difference equations are obtained by the fuzzy resolution theorem. Two numerical examples are given to demonstrate the feasibility and efficiency of the presented method for solving both steady-state and transient heat conduction problems.
基金the National Natural Science Foundation of China(Grants Nos.10925525 and 10805036)
文摘We study the thermal conduction behaviors of one-dimensional lattice models with asymmetric harmonic interparticle interactions. Normal thermal conductivity that is independent of system size is observed when the lattice chains are long enough. Because only the harmonic interactions are involved, the result confirms, without ambiguity, that asymmetry plays a key role in normal thermal conduction in one-dimensional momentum conserving lattices. Both equilibrium and nonequilibrium simulations are performed to support the conclusion.