The non-linear dynamic behaviors of thermoelastic circular plate with varying thickness subjected to radially uniformly distributed follower forces are considered. Two coupled non-linear differential equations of moti...The non-linear dynamic behaviors of thermoelastic circular plate with varying thickness subjected to radially uniformly distributed follower forces are considered. Two coupled non-linear differential equations of motion for this problem are derived in terms of the transverse deflection and radial displacement component of the mid-plane of the plate. Using the Kantorovich averaging method, the differential equation of mode shape of the plate is derived, and the eigenvalue problem is solved by using shooting method. The eigencurves for frequencies and critical loads of the circular plate with unmovable simply supported edge and clamped edge are obtained. The effects of the variation of thickness and temperature on the frequencies and critical loads of the thermoelastic circular plate subjected to radially uniformly distributed follower forces are then discussed.展开更多
The life cycle estimation of power plants is important for gas turbine operators.With the introduction of wind energy into the grid,gas turbine operators now operate their plants in Load–Following modes as back-ups t...The life cycle estimation of power plants is important for gas turbine operators.With the introduction of wind energy into the grid,gas turbine operators now operate their plants in Load–Following modes as back-ups to the renewable energy sources which include wind,solar,etc.The motive behind this study is to look at how much life is consumed when an intercooled power plant with 100 MW power output is used in conjunction with wind energy.This operation causes fluctuations because the wind energy is unpredictable and overtime causes adverse effects on the life of the plant–The High Pressure Turbine Blades.Such fluctuations give rise to low cycle fatigue and creep failure of the blades depending on the operating regime used.A performance based model that is capable of estimating the life consumed of an intercooled power plant has been developed.The model has the capability of estimating the life consumed based on seasonal power demands and operations.An in-depth comparison was undertaken on the life consumed during the seasons of operation and arrives at the conclusion that during summer,the creep and low cycle life is consumed higher than the rest periods.A comparison was also made to determine the life consumed between Load–Following and stop/start operating scenarios.It was also observed that daily creep life consumption in summer was higher than the winter period in-spite of having lower average daily operating hours in a Start–Stop operating scenario.展开更多
基金Natural Science Research Project of Education Department of Shaanxi Province,China(No.08JK394).
文摘The non-linear dynamic behaviors of thermoelastic circular plate with varying thickness subjected to radially uniformly distributed follower forces are considered. Two coupled non-linear differential equations of motion for this problem are derived in terms of the transverse deflection and radial displacement component of the mid-plane of the plate. Using the Kantorovich averaging method, the differential equation of mode shape of the plate is derived, and the eigenvalue problem is solved by using shooting method. The eigencurves for frequencies and critical loads of the circular plate with unmovable simply supported edge and clamped edge are obtained. The effects of the variation of thickness and temperature on the frequencies and critical loads of the thermoelastic circular plate subjected to radially uniformly distributed follower forces are then discussed.
文摘The life cycle estimation of power plants is important for gas turbine operators.With the introduction of wind energy into the grid,gas turbine operators now operate their plants in Load–Following modes as back-ups to the renewable energy sources which include wind,solar,etc.The motive behind this study is to look at how much life is consumed when an intercooled power plant with 100 MW power output is used in conjunction with wind energy.This operation causes fluctuations because the wind energy is unpredictable and overtime causes adverse effects on the life of the plant–The High Pressure Turbine Blades.Such fluctuations give rise to low cycle fatigue and creep failure of the blades depending on the operating regime used.A performance based model that is capable of estimating the life consumed of an intercooled power plant has been developed.The model has the capability of estimating the life consumed based on seasonal power demands and operations.An in-depth comparison was undertaken on the life consumed during the seasons of operation and arrives at the conclusion that during summer,the creep and low cycle life is consumed higher than the rest periods.A comparison was also made to determine the life consumed between Load–Following and stop/start operating scenarios.It was also observed that daily creep life consumption in summer was higher than the winter period in-spite of having lower average daily operating hours in a Start–Stop operating scenario.