A path following control algorithm for an unmanned underwater vehicle(UUV) using temporary path generation guidance was proposed in this paper.Owing to different initial states of the vehicle,such as position and or...A path following control algorithm for an unmanned underwater vehicle(UUV) using temporary path generation guidance was proposed in this paper.Owing to different initial states of the vehicle,such as position and orientation,the path following control in the horizontal plane may yield a poor performance.To deal with the negative effect induced by initial states,a temporary path generation was presented based on the relationship between the original reference path and the vehicle’s initial states.With different relative positions between the vehicle and reference path,including out of straight lines,as well as inside and outside a circle,the related temporary paths guiding the vehicle to the reference path were able to be generated in real time.The vehicle was guided to steer along the temporary path until it reached the tangent point at the reference path,where the controller was designed using the input-output feedback linearization method.Simulation results demonstrated that the proposed algorithm is effective under the three different situations mentioned above.展开更多
In this paper, we propose a new state predictive model following control system (MFCS). The considered system has linear time delays. With the MFCS method, we obtain a simple input control law. The bounded property ...In this paper, we propose a new state predictive model following control system (MFCS). The considered system has linear time delays. With the MFCS method, we obtain a simple input control law. The bounded property of the internal states for the control is given and the utility of this control design is guaranteed. Finally, an example is given to illustrate the effectiveness of the proposed method.展开更多
The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, externa...The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, external disturbance, etc. By introducing the Serret-Frenet frame and global coordinate transformation, the control problem of underactuated system(a nonlinear system with single-input and ternate-output) is transformed into the control problem of actuated system(a single-input and single-output nonlinear system), which simplifies the controller design. A backstepping adaptive sliding mode controller(BADSMC)is proposed based on backstepping design technique, adaptive method and theory of dynamic slide model control(DSMC). Then, it is proven that the state of closed loop system is globally stabilized to the desired configuration with the proposed controller. Simulation results are presented to illustrate the effectiveness of the proposed controller.展开更多
An optimal control procedure is developed for the front and rear wheels of a three-axle vehicle moving on a complex typical road based on model following variable structure control strategy. The actual vehicle may be ...An optimal control procedure is developed for the front and rear wheels of a three-axle vehicle moving on a complex typical road based on model following variable structure control strategy. The actual vehicle may be considered as an uncertain system. Cornering stiffness of front and rear wheels and external disturbances are varied in a limited range. The model-following variable structure control method is used to control both front and rear wheels steering operations of the vehicle, so that steering responses of the vehicle follow from those of the reference model. By numerical results obtained from computer simulation, it is demonstrated that the control system model can cope with the effects of parameter perturbations and outside disturbances.展开更多
This paper presents a genetic algorithm for the optimal design of model output following control in which there are nonlinear disturbance and uncertian parameters, where the output is regulated to follow the output of...This paper presents a genetic algorithm for the optimal design of model output following control in which there are nonlinear disturbance and uncertian parameters, where the output is regulated to follow the output of reference model. The effectiveness of the proposed algorithm is illustrated by some numerical examples.展开更多
In this paper, an integral-type robust mode following control for Plants with uncertainparameters and nonlinear factors is introduced. An genetic algorithm is also designed for obtaining thecontrol gains. Finally, som...In this paper, an integral-type robust mode following control for Plants with uncertainparameters and nonlinear factors is introduced. An genetic algorithm is also designed for obtaining thecontrol gains. Finally, some numerical examples are provided to illustrate the validity and efficiency ofthe proposed method.展开更多
In this paper output predictive algorithm is applied to the design of predictive controller for an optimal path terrain following system. In this way, the error of path tracking is decreased to a minimum degree simply...In this paper output predictive algorithm is applied to the design of predictive controller for an optimal path terrain following system. In this way, the error of path tracking is decreased to a minimum degree simply and efficiently and the computation time for the optimal path is shortened greatly. Therefore, the real-time processing of the optimal path terrain following system is made to be very helpful.展开更多
Recently, various control methods represented by proportional-integral-derivative (PID) control are used for robotic control. To cope with the requirements for high response and precision, advanced feedforward contr...Recently, various control methods represented by proportional-integral-derivative (PID) control are used for robotic control. To cope with the requirements for high response and precision, advanced feedforward controllers such as gravity compensator, Coriolis/centrifugal force compensator and friction compensators have been built in the controller. Generally, it causes heavy computational load when calculating the compensating value within a short sampling period. In this paper, integrated recurrent neural networks are applied as a feedforward controller for PUMA560 manipulator. The feedforward controller works instead of gravity and Coriolis/centrifugal force compensators. In the learning process of the neural network by using back propagation algorithm, the learning coefficient and gain of sigmoid function are tuned intuitively and empirically according to teaching signals. The tuning is complicated because it is being conducted by trial and error. Especially, when the scale of teaching signal is large, the problem becomes crucial. To cope with the problem which concerns the learning performance, a simple and adaptive learning technique for large scale teaching signals is proposed. The learning techniques and control effectiveness are evaluated through simulations using the dynamic model of PUMA560 manipulator.展开更多
This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensi...This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensive field measurement program was conducted to determine entry deformation,roof fracture zone,and anchor bolt(cable)loading.The results indicate that GSERC deformation presents asymmetric characteristics.The maximum convergence near roof cutting side is 458 mm during the primary use process and 1120 mm during the secondary reuse process.The entry deformation is closely associated with the primary development stage,primary use stage,and secondary reuse stage.The key block movement of roof cutting structure,a complex stress environment,and a mismatch in the supporting design scheme are the failure mechanism of GSERC.A controlling ideology for mining states,including regional and stage divisions,was proposed.Both dynamic and permanent support schemes have been implemented in the field.Engineering practice results indicate that the new support scheme can efficiently ensure long-term entry safety and could be a reliable approach for other engineering practices.展开更多
We present an integrated mathematical model of vehicle-following control for the establishment, maintenance, and re-establishment of the previous or new safe and efficient steady-following state. The hyperbolic functi...We present an integrated mathematical model of vehicle-following control for the establishment, maintenance, and re-establishment of the previous or new safe and efficient steady-following state. The hyperbolic functions are introduced to establish the corresponding mathematical models, which can describe the behavioral adjustment of the following vehicle steered by a well-experienced driver under complex vehicle following situations. According to the proposed mathematical models, the control laws of the following vehicle adjusting its own behavior can be calculated for its moving in safety,efficiency, and smoothness(comfort). Simulation results show that the safe and efficient steady-following state can be well established, maintained, and re-established by its own smooth(comfortable) behavioral adjustment with the synchronous control of the following vehicle’s velocity, acceleration, and the actual following distance.展开更多
With most countries paying attention to the environment protection, hybrid electric vehicles have become a focus of automobile research and development due to the characteristics of energy saving and low emission. Pow...With most countries paying attention to the environment protection, hybrid electric vehicles have become a focus of automobile research and development due to the characteristics of energy saving and low emission. Power follower control strategy(PFCS) and DC-link voltage control strategy are two sorts of control strategies for series hybrid electric vehicles(HEVs). Combining those two control strategies is a new idea for control strategy of series hybrid electric vehicles. By tuning essential parameters which are the defined constants under DClink voltage control and under PFCS, the points of minimum mass of equivalent fuel consumption(EFC) corresponding to a series of variables are marked for worldwide harmonized light vehicles test procedure(WLTP). The fuel economy of series HEVs with the combination control schemes performs better compared with individual control scheme. The results show the effects of the combination control schemes for series HEVs driving in an urban environment.展开更多
In this paper, a curved path following control algorithm for miniature unmanned aerial vehicles(UAVs) in winds with constant speed and altitude is developed. Different to the widely considered line or orbit followin...In this paper, a curved path following control algorithm for miniature unmanned aerial vehicles(UAVs) in winds with constant speed and altitude is developed. Different to the widely considered line or orbit following, the curved path to be followed is defined in terms of the arc-length parameter, which can be straight lines, orbits, B-splines or any other curves provided that they are smooth. The proposed path following control algorithm, named by VF-SMC, is combining the vector field(VF) strategy with the sliding mode control(SMC) method. It is proven that the designed algorithm guarantees the tracking errors to be a bounded ball in the presence of winds, with the aid of the Lyapunov method and the BIBO stability. The algorithm is validated both in Matlab-based simulations and high-fidelity semi-physical simulations. In Matlab-based simulations, the proposed algorithm is verified for straight lines, orbits and B-splines to show its wide usage in different curves.The high-fidelity semi-physical simulation system is composed of actual autopilot controller, ground station and X-Plane flight simulator in-loop. In semi-physical simulations, the proposed algorithm is verified for B-spline path following under various gain parameters and wind conditions thoroughly.All experiments show the accuracy in curved path following and the excellent robustness to wind disturbances of the proposed algorithm.展开更多
Purpose–This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane(CLL)intersections.Design/methodology/approach–The lateral lane change control and t...Purpose–This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane(CLL)intersections.Design/methodology/approach–The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness.The proposed model is cast into a mixed-integer linear programming problem and then solved by the branch-and-bound technique.Findings–The proposed model has a promising control effect under different geometric controlled conditions.Moreover,the proposed model performs robustly under various safety time headways,lengths of the CLL and green times of the main signal.Originality/value–This study proposed a centralized optimal control model for automated left-turn platoon at CLL intersections.The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness。展开更多
The renewable energy sources(RESs)dominated power grid is an envisaged infrastructure of the future power system,where the commonly used grid following(GFL)control for grid-tied converters suffers from lacking grid su...The renewable energy sources(RESs)dominated power grid is an envisaged infrastructure of the future power system,where the commonly used grid following(GFL)control for grid-tied converters suffers from lacking grid support capability,low stability,etc.Recently,emerging grid forming(GFM)control methods have been proposed to improve the dynamic performance and stability of grid-tied converters.This paper reviews existing GFM control methods for the grid-tied converters and compares them in terms of control structure,grid support capability,fault current limiting,and stability.Considering the impact of fault current limiting strategies,a comprehensive transient stability analysis is provided.In addition,this paper explores the typical applications of GFM converters,such as AC microgrid and offshore wind farm high-voltage direct current(OWF-HVDC)integration systems.Finally,the challenges to the GFM converters in future applications are discussed.展开更多
In recent years, multiple applications have emerged in the area of payload transport using unmanned aerial vehicles(UAVs). This has attracted considerable interest among the scientific community, especially the cases ...In recent years, multiple applications have emerged in the area of payload transport using unmanned aerial vehicles(UAVs). This has attracted considerable interest among the scientific community, especially the cases involving one or several rotarywing UAVs. In this context, this work proposes a novel measurement system which can estimate the payload position and the force exerted by it on the UAV. This measurement system is low cost, easy to implement, and can be used either in indoor or outdoor environments(no sensorized laboratory is needed). The measurement system is validated statically and dynamically. In the first test, the estimations obtained by the system are compared with measurements produced by high-precision devices. In the second test, the system is used in real experiments to compare its performance with the ones obtained using known procedures. These experiments allowed to draw interesting conclusions on which future research can be based.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.51179038the Program of New Century Excellent Talents in University under Grant No. NCET-10-0053
文摘A path following control algorithm for an unmanned underwater vehicle(UUV) using temporary path generation guidance was proposed in this paper.Owing to different initial states of the vehicle,such as position and orientation,the path following control in the horizontal plane may yield a poor performance.To deal with the negative effect induced by initial states,a temporary path generation was presented based on the relationship between the original reference path and the vehicle’s initial states.With different relative positions between the vehicle and reference path,including out of straight lines,as well as inside and outside a circle,the related temporary paths guiding the vehicle to the reference path were able to be generated in real time.The vehicle was guided to steer along the temporary path until it reached the tangent point at the reference path,where the controller was designed using the input-output feedback linearization method.Simulation results demonstrated that the proposed algorithm is effective under the three different situations mentioned above.
文摘In this paper, we propose a new state predictive model following control system (MFCS). The considered system has linear time delays. With the MFCS method, we obtain a simple input control law. The bounded property of the internal states for the control is given and the utility of this control design is guaranteed. Finally, an example is given to illustrate the effectiveness of the proposed method.
基金Project(51409061)supported by the National Natural Science Foundation of ChinaProject(2013M540271)supported by China Postdoctoral Science Foundation+1 种基金Project(LBH-Z13055)supported by Heilongjiang Postdoctoral Financial Assistance,ChinaProject(HEUCFD1403)supported by Basic Research Foundation of Central Universities,China
文摘The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, external disturbance, etc. By introducing the Serret-Frenet frame and global coordinate transformation, the control problem of underactuated system(a nonlinear system with single-input and ternate-output) is transformed into the control problem of actuated system(a single-input and single-output nonlinear system), which simplifies the controller design. A backstepping adaptive sliding mode controller(BADSMC)is proposed based on backstepping design technique, adaptive method and theory of dynamic slide model control(DSMC). Then, it is proven that the state of closed loop system is globally stabilized to the desired configuration with the proposed controller. Simulation results are presented to illustrate the effectiveness of the proposed controller.
文摘An optimal control procedure is developed for the front and rear wheels of a three-axle vehicle moving on a complex typical road based on model following variable structure control strategy. The actual vehicle may be considered as an uncertain system. Cornering stiffness of front and rear wheels and external disturbances are varied in a limited range. The model-following variable structure control method is used to control both front and rear wheels steering operations of the vehicle, so that steering responses of the vehicle follow from those of the reference model. By numerical results obtained from computer simulation, it is demonstrated that the control system model can cope with the effects of parameter perturbations and outside disturbances.
文摘This paper presents a genetic algorithm for the optimal design of model output following control in which there are nonlinear disturbance and uncertian parameters, where the output is regulated to follow the output of reference model. The effectiveness of the proposed algorithm is illustrated by some numerical examples.
文摘In this paper, an integral-type robust mode following control for Plants with uncertainparameters and nonlinear factors is introduced. An genetic algorithm is also designed for obtaining thecontrol gains. Finally, some numerical examples are provided to illustrate the validity and efficiency ofthe proposed method.
文摘In this paper output predictive algorithm is applied to the design of predictive controller for an optimal path terrain following system. In this way, the error of path tracking is decreased to a minimum degree simply and efficiently and the computation time for the optimal path is shortened greatly. Therefore, the real-time processing of the optimal path terrain following system is made to be very helpful.
基金supported by Grant-in-Aid for Scientific Research(C) (No. 20560248) of Japan
文摘Recently, various control methods represented by proportional-integral-derivative (PID) control are used for robotic control. To cope with the requirements for high response and precision, advanced feedforward controllers such as gravity compensator, Coriolis/centrifugal force compensator and friction compensators have been built in the controller. Generally, it causes heavy computational load when calculating the compensating value within a short sampling period. In this paper, integrated recurrent neural networks are applied as a feedforward controller for PUMA560 manipulator. The feedforward controller works instead of gravity and Coriolis/centrifugal force compensators. In the learning process of the neural network by using back propagation algorithm, the learning coefficient and gain of sigmoid function are tuned intuitively and empirically according to teaching signals. The tuning is complicated because it is being conducted by trial and error. Especially, when the scale of teaching signal is large, the problem becomes crucial. To cope with the problem which concerns the learning performance, a simple and adaptive learning technique for large scale teaching signals is proposed. The learning techniques and control effectiveness are evaluated through simulations using the dynamic model of PUMA560 manipulator.
基金Project(WPUKFJJ2019-19)supported by the Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining,ChinaProject(51974317)supported by the National Natural Science Foundation of China。
文摘This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensive field measurement program was conducted to determine entry deformation,roof fracture zone,and anchor bolt(cable)loading.The results indicate that GSERC deformation presents asymmetric characteristics.The maximum convergence near roof cutting side is 458 mm during the primary use process and 1120 mm during the secondary reuse process.The entry deformation is closely associated with the primary development stage,primary use stage,and secondary reuse stage.The key block movement of roof cutting structure,a complex stress environment,and a mismatch in the supporting design scheme are the failure mechanism of GSERC.A controlling ideology for mining states,including regional and stage divisions,was proposed.Both dynamic and permanent support schemes have been implemented in the field.Engineering practice results indicate that the new support scheme can efficiently ensure long-term entry safety and could be a reliable approach for other engineering practices.
基金supported by the National Natural Science Foundation of China(Grant No.61174183)
文摘We present an integrated mathematical model of vehicle-following control for the establishment, maintenance, and re-establishment of the previous or new safe and efficient steady-following state. The hyperbolic functions are introduced to establish the corresponding mathematical models, which can describe the behavioral adjustment of the following vehicle steered by a well-experienced driver under complex vehicle following situations. According to the proposed mathematical models, the control laws of the following vehicle adjusting its own behavior can be calculated for its moving in safety,efficiency, and smoothness(comfort). Simulation results show that the safe and efficient steady-following state can be well established, maintained, and re-established by its own smooth(comfortable) behavioral adjustment with the synchronous control of the following vehicle’s velocity, acceleration, and the actual following distance.
基金supported in part by the National Natural Science Foundation of China(61773382,61773381,61533019)Chinese Guangdongs S&T projects(2016B090910001,2017B090912001)+1 种基金2016 S&T Benefiting Special Project(16-6-2-62-nsh)of Qingdao Achievements Transformation ProgramDongguan Innovation Talents Project(Gang Xiong)
文摘With most countries paying attention to the environment protection, hybrid electric vehicles have become a focus of automobile research and development due to the characteristics of energy saving and low emission. Power follower control strategy(PFCS) and DC-link voltage control strategy are two sorts of control strategies for series hybrid electric vehicles(HEVs). Combining those two control strategies is a new idea for control strategy of series hybrid electric vehicles. By tuning essential parameters which are the defined constants under DClink voltage control and under PFCS, the points of minimum mass of equivalent fuel consumption(EFC) corresponding to a series of variables are marked for worldwide harmonized light vehicles test procedure(WLTP). The fuel economy of series HEVs with the combination control schemes performs better compared with individual control scheme. The results show the effects of the combination control schemes for series HEVs driving in an urban environment.
基金supported by the National Natural Science Foundation of China under Grant No.61403406
文摘In this paper, a curved path following control algorithm for miniature unmanned aerial vehicles(UAVs) in winds with constant speed and altitude is developed. Different to the widely considered line or orbit following, the curved path to be followed is defined in terms of the arc-length parameter, which can be straight lines, orbits, B-splines or any other curves provided that they are smooth. The proposed path following control algorithm, named by VF-SMC, is combining the vector field(VF) strategy with the sliding mode control(SMC) method. It is proven that the designed algorithm guarantees the tracking errors to be a bounded ball in the presence of winds, with the aid of the Lyapunov method and the BIBO stability. The algorithm is validated both in Matlab-based simulations and high-fidelity semi-physical simulations. In Matlab-based simulations, the proposed algorithm is verified for straight lines, orbits and B-splines to show its wide usage in different curves.The high-fidelity semi-physical simulation system is composed of actual autopilot controller, ground station and X-Plane flight simulator in-loop. In semi-physical simulations, the proposed algorithm is verified for B-spline path following under various gain parameters and wind conditions thoroughly.All experiments show the accuracy in curved path following and the excellent robustness to wind disturbances of the proposed algorithm.
基金the National Natural Science Foundation of China under Grant No.71971140the Soft Science Research Project of Shanghai No.22692194500the Pujiang Program under Grant No.21PJC085.
文摘Purpose–This study aims to propose a centralized optimal control model for automated left-turn platoon at contraflow left-turn lane(CLL)intersections.Design/methodology/approach–The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness.The proposed model is cast into a mixed-integer linear programming problem and then solved by the branch-and-bound technique.Findings–The proposed model has a promising control effect under different geometric controlled conditions.Moreover,the proposed model performs robustly under various safety time headways,lengths of the CLL and green times of the main signal.Originality/value–This study proposed a centralized optimal control model for automated left-turn platoon at CLL intersections.The lateral lane change control and the longitudinal acceleration in the control horizon are optimized simultaneously with the objective of maximizing traffic efficiency and smoothness。
基金supported by the Xinjiang Autonomous Region Key R&D Projects(No.2020B02002)。
文摘The renewable energy sources(RESs)dominated power grid is an envisaged infrastructure of the future power system,where the commonly used grid following(GFL)control for grid-tied converters suffers from lacking grid support capability,low stability,etc.Recently,emerging grid forming(GFM)control methods have been proposed to improve the dynamic performance and stability of grid-tied converters.This paper reviews existing GFM control methods for the grid-tied converters and compares them in terms of control structure,grid support capability,fault current limiting,and stability.Considering the impact of fault current limiting strategies,a comprehensive transient stability analysis is provided.In addition,this paper explores the typical applications of GFM converters,such as AC microgrid and offshore wind farm high-voltage direct current(OWF-HVDC)integration systems.Finally,the challenges to the GFM converters in future applications are discussed.
基金by National Scientific and Technical Research Council(CONICET)the National University of San Juan(UNSJ),both from Argentina.
文摘In recent years, multiple applications have emerged in the area of payload transport using unmanned aerial vehicles(UAVs). This has attracted considerable interest among the scientific community, especially the cases involving one or several rotarywing UAVs. In this context, this work proposes a novel measurement system which can estimate the payload position and the force exerted by it on the UAV. This measurement system is low cost, easy to implement, and can be used either in indoor or outdoor environments(no sensorized laboratory is needed). The measurement system is validated statically and dynamically. In the first test, the estimations obtained by the system are compared with measurements produced by high-precision devices. In the second test, the system is used in real experiments to compare its performance with the ones obtained using known procedures. These experiments allowed to draw interesting conclusions on which future research can be based.