In recent years, researchers tended to bring new alternative to biological protective systems used in conservation of food and production of safe food. Use of bacteriophage against to pathogen bacteria in food was the...In recent years, researchers tended to bring new alternative to biological protective systems used in conservation of food and production of safe food. Use of bacteriophage against to pathogen bacteria in food was the most hopeful system in these methods about bio-control. Controls of bacteriophage for each pathogen species and subspecies and determination of phage-host originality are important because efficient bio-control was achieved. Researches concentrated on some food-borne pathogen bacteria such as E. coli O157:H7, Campylobacter, Salmonella and Listeria. In a consequence of these studies made as in vitro and in vivo, first commercial production of phage which will be used in foods was made in Netherlands. Also, it has been informed that use of phage is cost-efficient alternative as compared with other preservatives. This review, discussed application of bacteriophages as bio-control agents in food and advantages and disadvantages about uses of bacteriophages by taking into account antimicrobial characteristics of them.展开更多
Five wild plant species belonging to different families (Chenopodium album, Plantago major, Elytrigia elongata, Filipendula ulmaria and Nigella sativa) widely spread in Russian Federation and the former USSR were eval...Five wild plant species belonging to different families (Chenopodium album, Plantago major, Elytrigia elongata, Filipendula ulmaria and Nigella sativa) widely spread in Russian Federation and the former USSR were evaluated for their ability to inhibit growth of two important human food-borne pathogens (Escherichia coli O157:H7 and Listeria monocytogenes strain EGD-e) and eight plant pathogens (Alternaria alternata, Alternaria tenuissima, Bipolaris sorokiniana, Stagonospora nodorum, Fusarium solani, Fusarium oxysporum, Fusarium culmorum and Phytophtora infestans). To isolate biologically active compounds from seeds, a step-wise procedure including extraction with hexane, ethyl acetate, ethanol, and 10% acetic acid followed by reversed-phase HPLC was developed. Using disc-diffusion assay, the highest activity against E. coli O157:H7 was observed with extracts from F. ulmaria (hexane and ethyl acetate extracts and the unbound RP-HPLC fraction) and P. major (ethyl acetate extract and the unbound RP-HPLC fraction);E. elongate (the unbound RP-HPLC fraction) was less active. The extracts from P. major and E. elongate (the unbound RP-HPLC fractions) were equally highly active against L. monocytogenes, while those of F. ulmaria (the unbound RP-HPLC fraction) and N. sativa (hexane and ethyl acetate extracts) were less active against this pathogen. The dynamics of L. monocytogenes EGD-е and E. coli O157:H7 growth in the presence of two most potent extracts (RP-HPLC-unbound fractions of P. major and E. elongate and the hexane extract of F. ulmaria) was studied.展开更多
Due to the increasing number of food-borne diseases,more attention is being paid to food safety.Food-borne pathogens are the main cause of food-borne diseases,which seriously endanger human health,so it is necessary t...Due to the increasing number of food-borne diseases,more attention is being paid to food safety.Food-borne pathogens are the main cause of food-borne diseases,which seriously endanger human health,so it is necessary to detect and control them.Traditional detection methods cannot meet the requirements of rapid detection of food due to many shortcomings,such as being time-consuming,laborious or requiring expensive instrumentation.Quantum dots have become a promising nanotechnology in pathogens tracking and detection because of their excellent optical properties.New biosensor detection methods based on quantum dots are have been gradually developed due to their high sensitivity and high specificity.In this review,we summarize the different characteristics of quantum dots synthesized by carbon,heavy metals and composite materials firstly.Then,attention is paid to the principles,advantages and limitations of the quantum dots biosensor with antibodies and aptamers as recognition elements for recognition and capture of food-borne pathogens.Finally,the great potential of quantum dots in pathogen detection is summarized.展开更多
Faced with rapid population growth and fresh water scarcity, reuse of reclaimed water is growing worldwide and becoming an integral part of water resource management. Our objective was to determine the fate of nutrien...Faced with rapid population growth and fresh water scarcity, reuse of reclaimed water is growing worldwide and becoming an integral part of water resource management. Our objective was to determine the fate of nutrients, trace metals, bacteria, and legacy organic compounds (organochlorine pesticides) in the recycled water from five commercial nursery ponds in Florida. The pH of recycled water at all sites was 8.1 - 9.3, except one site (6.5), while the electrical conductivity (EC) was 0.31 - 0.36 dS/m. Concentrations of trace metals in recycled water were low: Fe (0.125 - 0.367 mg/L), Al (0.126 - 0.169 mg/L), B (0.104 - 0.153 mg/L), Zn (0.123 - 0.211 mg/L), and Mn (<0.111 mg/L). Total phosphorus (P) and total nitrogen (N) in the recycled water were 0.35 - 1.00 mg/L and 1.56 - 2.30 mg/L, respectively. Among organochlorine pesticides, endrin aldehyde was the only pesticide detected in all nursery recycled water ponds, with concentrations from 0.04 to 0.10 μg/L at four sites and 1.62 μg/L at one site. Other detected pesticides in recycled water were methoxychlor, endosulfan sulfate, dichlorodiphenyldichloroethylene (DDE) and α-chlorodane, with concentrations < 0.20 μg/L. Total coliforms and Escherichia coli (E. coli) in recycled water were 20 - 50 colony forming units (CFU)/100 mL. We conclude that the concentrations of various inorganic and organic compounds in recycled water are very low and do not appear to be problematic for irrigation purposes in Florida’s nursery recycled water ponds.展开更多
This study investigated the spread of foodborne pathogens: Listeria monocytogenes, Es-cherichia coli O157:H7, Staphylococcus aureus and Salmonella in chicken sausage samples collected from retail markets in Greece and...This study investigated the spread of foodborne pathogens: Listeria monocytogenes, Es-cherichia coli O157:H7, Staphylococcus aureus and Salmonella in chicken sausage samples collected from retail markets in Greece and Egypt during 2006 and from Egypt through 2010. Other microbiological parameters;total viable count (TVC), lactic acid bacteria (LAB), pseudomonads (PS), staphylococci (STAPH), Brochothrix thermosphacta (BT), Enterobacteriaceae (EN), Escherichia coli (EC), yeasts and moulds (Y&M) were also counted. Egyptian chicken sausage samples were found to harbor L. mono- cytogenes, Staph. aureus and E. coli O157:H7;with frequencies equivalent to 24%, 60% and 26% of the total samples during 2006 and 37.87%, 64.44% and 41.11% of the total samples during 2010, respectively, while Greek samples were entirely free of theses pathogens. Enrichment techniques indicated the absence of Salmonella from both Greek and Egyptian samples. The obtained results may mobilize food producers and handlers in developing countries to take the due measures reducing food-borne pathogen risks and spoilage flora alongside the poultry chain.展开更多
Antimicrobial effects of carnosic acid,kaempferol and luteolin on biogenic amine(BA)production by five spoilage(Photobacterium damselae,Proteus mirabilis,Enterobacter cloacea,Pseudomonas luteola and Serratia liquefaci...Antimicrobial effects of carnosic acid,kaempferol and luteolin on biogenic amine(BA)production by five spoilage(Photobacterium damselae,Proteus mirabilis,Enterobacter cloacea,Pseudomonas luteola and Serratia liquefaciens)and five food-borne pathogenic bacteria(Staphylococcus aureus ATCC29213,Enterococcus faecalis ATCC29212,Escherichia coli ATCC25922,Salmonella Paratyphi A NCTC13 and Yersinia enterocolitica NCTC 11175)were investigated.The formation of ammonia(AMN),trimethylamine(TMA)and BAs by all bacterial strains were observed using ornithine decarboxylase broth.BAs,AMN,and TMA were determined by using high performance liquid chromatography(HPLC)method.The results showed that significant differences were observed(P≤0.05)in formation among spoilage and also food-borne bacteria.The impact of phenolic compounds on AMN,TMA and BAs production was dependent on bacterial strains.When total amount of cadaverine(CAD),putrescine(PUT),histamine(HIS)and tyramine(TYR)was considered,the phenolic compounds presented antimicrobial activity against fish spoliage bacteria and food-borne pathogens following the order;kaempferol>carnosic acid>luteolin.These phenolics have potential to be used as food preservatives.展开更多
变性梯度凝胶电泳(denaturing gradient gel electrophoresis,DGGE)可以克服传统微生物检测方法的弊端,不依赖于微生物的分离培养,是微生物分子多样性研究的热点技术之一。DGGE技术具有可靠性强、重复性好、易操作、可同时分析多个样品...变性梯度凝胶电泳(denaturing gradient gel electrophoresis,DGGE)可以克服传统微生物检测方法的弊端,不依赖于微生物的分离培养,是微生物分子多样性研究的热点技术之一。DGGE技术具有可靠性强、重复性好、易操作、可同时分析多个样品等优点,结合聚合酶链式反应(polymerase chain reaction,PCR),被广泛地应用在微生物群落组成及其遗传信息、多样性及不同种群动态比较分析等方面。本文介绍了DGGE技术的基本原理、操作过程、优缺点,并概述了其在食品微生物多样性分析中的应用,分析了该技术在水产品、酒类、发酵食品、肉制品等领域应用现状。通过分析目前在食品微生物多样性分析中的优点和不足,提出发展方向,最后对DGGE技术在食源性致病菌溯源应用前景进行评述,以期为我国食品安全食源性致病菌快速溯源技术的发展提供文献支持。展开更多
Lactic acid bacteria(LAB)are common microorganisms found in various ecosystems including in plants,fermented foods,and the human body.Exploring the biodiversity of lactic acid microflora and characterization of LAB is...Lactic acid bacteria(LAB)are common microorganisms found in various ecosystems including in plants,fermented foods,and the human body.Exploring the biodiversity of lactic acid microflora and characterization of LAB is a new approach to form a variety of starter communities to create innovative nutritional food matrices.There has been growing interest in LAB isolated from non-dairy environments as these bacteria exhibit significant metabolic diversity and have unique taste-forming activities.Disease may be prevented,or treated by LAB but the treatment of disease conditions with LAB is highly dependent on the host's microbiome and diet and varies in both effectiveness and side effects from individual to individual.Future perspectives on the study of LAB may be related to the expansion of our knowledge in the fields of genetics and genetic engineering.The application of genetic science may help to improve existing strains and develop new strains with characteristics designed for specific purposes.Therefore,the preservative effects of LAB and their metabolites,as well as their interaction on the growth of food borne pathogens and food spoilage microorganisms were elucidated.In addition,the competitive models for microbial growth between LAB and other microorganisms as well as the role of LAB in the elimination of toxic compounds in food products were discussed.Moreover,the review provided an overview of the risks and benefits of using LAB in the food industry.展开更多
In this work, a grape phenolic extract obtained by methanol extraction has been demonstrated to be effective in inhibiting the growth of different strains and species of Campylobacter, one of the most important bacter...In this work, a grape phenolic extract obtained by methanol extraction has been demonstrated to be effective in inhibiting the growth of different strains and species of Campylobacter, one of the most important bacterial foodborne pathogens causing gastroenteritis worldwide. Noteworthily, it was particularly effective against several strains presenting multiple antibiotic resistances. In all cases, the minimum inhibitory concentration (MIC) was lower than 300 mg GAE/L, being of 60 mg GAE/L for one of the most resistant strains (C. coli LP2), while the others were between 120 mg GAE/L and 180 mg GAE/L. The analytical study of the main phenolic compounds in the grape extract revealed that it was mainly constituted by catechins (85.7%) and phenolic acids (13.7%). However, experiments developed using pure standards demonstrate that phenolic acids (such as gallic, p-hidroxibenzoic, vanillic, and homovanillic acids) were the most active, provoking a Campylobacter growth decrease between 6.7 and 7.6 log, while epicatechin was the only catechin with activity as pure compound (1 log of growth decrease).展开更多
文摘In recent years, researchers tended to bring new alternative to biological protective systems used in conservation of food and production of safe food. Use of bacteriophage against to pathogen bacteria in food was the most hopeful system in these methods about bio-control. Controls of bacteriophage for each pathogen species and subspecies and determination of phage-host originality are important because efficient bio-control was achieved. Researches concentrated on some food-borne pathogen bacteria such as E. coli O157:H7, Campylobacter, Salmonella and Listeria. In a consequence of these studies made as in vitro and in vivo, first commercial production of phage which will be used in foods was made in Netherlands. Also, it has been informed that use of phage is cost-efficient alternative as compared with other preservatives. This review, discussed application of bacteriophages as bio-control agents in food and advantages and disadvantages about uses of bacteriophages by taking into account antimicrobial characteristics of them.
文摘Five wild plant species belonging to different families (Chenopodium album, Plantago major, Elytrigia elongata, Filipendula ulmaria and Nigella sativa) widely spread in Russian Federation and the former USSR were evaluated for their ability to inhibit growth of two important human food-borne pathogens (Escherichia coli O157:H7 and Listeria monocytogenes strain EGD-e) and eight plant pathogens (Alternaria alternata, Alternaria tenuissima, Bipolaris sorokiniana, Stagonospora nodorum, Fusarium solani, Fusarium oxysporum, Fusarium culmorum and Phytophtora infestans). To isolate biologically active compounds from seeds, a step-wise procedure including extraction with hexane, ethyl acetate, ethanol, and 10% acetic acid followed by reversed-phase HPLC was developed. Using disc-diffusion assay, the highest activity against E. coli O157:H7 was observed with extracts from F. ulmaria (hexane and ethyl acetate extracts and the unbound RP-HPLC fraction) and P. major (ethyl acetate extract and the unbound RP-HPLC fraction);E. elongate (the unbound RP-HPLC fraction) was less active. The extracts from P. major and E. elongate (the unbound RP-HPLC fractions) were equally highly active against L. monocytogenes, while those of F. ulmaria (the unbound RP-HPLC fraction) and N. sativa (hexane and ethyl acetate extracts) were less active against this pathogen. The dynamics of L. monocytogenes EGD-е and E. coli O157:H7 growth in the presence of two most potent extracts (RP-HPLC-unbound fractions of P. major and E. elongate and the hexane extract of F. ulmaria) was studied.
基金supported by the Breeding Plan of Shandong Provincial Qingchuang Research Team(2019-135)Qingdao science and technology project 21-l-4-sf-6-nsh,China.
文摘Due to the increasing number of food-borne diseases,more attention is being paid to food safety.Food-borne pathogens are the main cause of food-borne diseases,which seriously endanger human health,so it is necessary to detect and control them.Traditional detection methods cannot meet the requirements of rapid detection of food due to many shortcomings,such as being time-consuming,laborious or requiring expensive instrumentation.Quantum dots have become a promising nanotechnology in pathogens tracking and detection because of their excellent optical properties.New biosensor detection methods based on quantum dots are have been gradually developed due to their high sensitivity and high specificity.In this review,we summarize the different characteristics of quantum dots synthesized by carbon,heavy metals and composite materials firstly.Then,attention is paid to the principles,advantages and limitations of the quantum dots biosensor with antibodies and aptamers as recognition elements for recognition and capture of food-borne pathogens.Finally,the great potential of quantum dots in pathogen detection is summarized.
文摘Faced with rapid population growth and fresh water scarcity, reuse of reclaimed water is growing worldwide and becoming an integral part of water resource management. Our objective was to determine the fate of nutrients, trace metals, bacteria, and legacy organic compounds (organochlorine pesticides) in the recycled water from five commercial nursery ponds in Florida. The pH of recycled water at all sites was 8.1 - 9.3, except one site (6.5), while the electrical conductivity (EC) was 0.31 - 0.36 dS/m. Concentrations of trace metals in recycled water were low: Fe (0.125 - 0.367 mg/L), Al (0.126 - 0.169 mg/L), B (0.104 - 0.153 mg/L), Zn (0.123 - 0.211 mg/L), and Mn (<0.111 mg/L). Total phosphorus (P) and total nitrogen (N) in the recycled water were 0.35 - 1.00 mg/L and 1.56 - 2.30 mg/L, respectively. Among organochlorine pesticides, endrin aldehyde was the only pesticide detected in all nursery recycled water ponds, with concentrations from 0.04 to 0.10 μg/L at four sites and 1.62 μg/L at one site. Other detected pesticides in recycled water were methoxychlor, endosulfan sulfate, dichlorodiphenyldichloroethylene (DDE) and α-chlorodane, with concentrations < 0.20 μg/L. Total coliforms and Escherichia coli (E. coli) in recycled water were 20 - 50 colony forming units (CFU)/100 mL. We conclude that the concentrations of various inorganic and organic compounds in recycled water are very low and do not appear to be problematic for irrigation purposes in Florida’s nursery recycled water ponds.
文摘This study investigated the spread of foodborne pathogens: Listeria monocytogenes, Es-cherichia coli O157:H7, Staphylococcus aureus and Salmonella in chicken sausage samples collected from retail markets in Greece and Egypt during 2006 and from Egypt through 2010. Other microbiological parameters;total viable count (TVC), lactic acid bacteria (LAB), pseudomonads (PS), staphylococci (STAPH), Brochothrix thermosphacta (BT), Enterobacteriaceae (EN), Escherichia coli (EC), yeasts and moulds (Y&M) were also counted. Egyptian chicken sausage samples were found to harbor L. mono- cytogenes, Staph. aureus and E. coli O157:H7;with frequencies equivalent to 24%, 60% and 26% of the total samples during 2006 and 37.87%, 64.44% and 41.11% of the total samples during 2010, respectively, while Greek samples were entirely free of theses pathogens. Enrichment techniques indicated the absence of Salmonella from both Greek and Egyptian samples. The obtained results may mobilize food producers and handlers in developing countries to take the due measures reducing food-borne pathogen risks and spoilage flora alongside the poultry chain.
基金The author thanks the Scientific Research Projects Unit inÇukurova Univ.For their financial support(Research Project:FBA 2015-4369).
文摘Antimicrobial effects of carnosic acid,kaempferol and luteolin on biogenic amine(BA)production by five spoilage(Photobacterium damselae,Proteus mirabilis,Enterobacter cloacea,Pseudomonas luteola and Serratia liquefaciens)and five food-borne pathogenic bacteria(Staphylococcus aureus ATCC29213,Enterococcus faecalis ATCC29212,Escherichia coli ATCC25922,Salmonella Paratyphi A NCTC13 and Yersinia enterocolitica NCTC 11175)were investigated.The formation of ammonia(AMN),trimethylamine(TMA)and BAs by all bacterial strains were observed using ornithine decarboxylase broth.BAs,AMN,and TMA were determined by using high performance liquid chromatography(HPLC)method.The results showed that significant differences were observed(P≤0.05)in formation among spoilage and also food-borne bacteria.The impact of phenolic compounds on AMN,TMA and BAs production was dependent on bacterial strains.When total amount of cadaverine(CAD),putrescine(PUT),histamine(HIS)and tyramine(TYR)was considered,the phenolic compounds presented antimicrobial activity against fish spoliage bacteria and food-borne pathogens following the order;kaempferol>carnosic acid>luteolin.These phenolics have potential to be used as food preservatives.
基金supported by the PRIMA program under project BioProMedFood(ref.no.2019-SECTION2-4 Project ID 1467)supported by the European Union+1 种基金supported by the Scientific and Technological Research Council of Turkey(TUBITAK)N-UPAG 119N492(PRIMA Programme Section 2).
文摘Lactic acid bacteria(LAB)are common microorganisms found in various ecosystems including in plants,fermented foods,and the human body.Exploring the biodiversity of lactic acid microflora and characterization of LAB is a new approach to form a variety of starter communities to create innovative nutritional food matrices.There has been growing interest in LAB isolated from non-dairy environments as these bacteria exhibit significant metabolic diversity and have unique taste-forming activities.Disease may be prevented,or treated by LAB but the treatment of disease conditions with LAB is highly dependent on the host's microbiome and diet and varies in both effectiveness and side effects from individual to individual.Future perspectives on the study of LAB may be related to the expansion of our knowledge in the fields of genetics and genetic engineering.The application of genetic science may help to improve existing strains and develop new strains with characteristics designed for specific purposes.Therefore,the preservative effects of LAB and their metabolites,as well as their interaction on the growth of food borne pathogens and food spoilage microorganisms were elucidated.In addition,the competitive models for microbial growth between LAB and other microorganisms as well as the role of LAB in the elimination of toxic compounds in food products were discussed.Moreover,the review provided an overview of the risks and benefits of using LAB in the food industry.
文摘In this work, a grape phenolic extract obtained by methanol extraction has been demonstrated to be effective in inhibiting the growth of different strains and species of Campylobacter, one of the most important bacterial foodborne pathogens causing gastroenteritis worldwide. Noteworthily, it was particularly effective against several strains presenting multiple antibiotic resistances. In all cases, the minimum inhibitory concentration (MIC) was lower than 300 mg GAE/L, being of 60 mg GAE/L for one of the most resistant strains (C. coli LP2), while the others were between 120 mg GAE/L and 180 mg GAE/L. The analytical study of the main phenolic compounds in the grape extract revealed that it was mainly constituted by catechins (85.7%) and phenolic acids (13.7%). However, experiments developed using pure standards demonstrate that phenolic acids (such as gallic, p-hidroxibenzoic, vanillic, and homovanillic acids) were the most active, provoking a Campylobacter growth decrease between 6.7 and 7.6 log, while epicatechin was the only catechin with activity as pure compound (1 log of growth decrease).