期刊文献+
共找到11,659篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental and Numerical Study on Progressive Collapse Analysis of a Glulam Frame Structure:I.Side Column Exposed to Fire
1
作者 Xiaowu Cheng Xinyan Tao Lu Wang 《Journal of Renewable Materials》 SCIE EI 2023年第2期905-920,共16页
This paper presents experimental and numerical investigations on progressive collapse behavior of a two-story glulam frame when the side column is exposed to ISO834 standard fire.The collapse mechanism initiated by fi... This paper presents experimental and numerical investigations on progressive collapse behavior of a two-story glulam frame when the side column is exposed to ISO834 standard fire.The collapse mechanism initiated by fire is identified.The experimental results show that the progressive collapse of a glulam frame could be described for three stages,namely bending effect stage,catenary effect stage and failure stage,respectively.These stages are discussed in detail to understand the structural behavior before and during collapse.It is demonstrated that the entire frame slopes towards the side of the heated column,and the“overturning”collapse occurs eventually.The catenary effect of beams is the main reason for the progressive collapse of the frame.In addition,a finite element model of a glulam frame is established to simulate the progressive collapse behavior.The effects of axial loads on the columns are summarized.The numerical simulation results agree well with the experimental results,which could verify the effectiveness and practicability of finite element simulation.Furthermore,the progressive collapse resistance of the frame in practical design were proposed. 展开更多
关键词 COLLAPSE glulam frame structure FIRE failure mechanisms
下载PDF
Response Spectrum Analysis of 7-story Assembled Frame Structure with Energy Dissipation System
2
作者 Jin Zhao Yi Wang Zhengwei Ma 《Structural Durability & Health Monitoring》 EI 2023年第2期159-173,共15页
Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application ... Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application prospect in actual structural vibration control because of simple device and economical material.In view of the poor seismic behaviors of assembled frame structure connections,various energy dissipation devices are proposed to improve the seismic performance.The finite element numerical analysis method is adopted to analyze relevant energy dissipation structural parameters.The response spectrum of a 7-story assembled frame structure combined the ordinary steel support,ordinary viscoelastic damper,and viscoelastic damper with displacement amplification device is analyzed.The analysis results show that the mechanical behavior of assembled frame structure with ordinary steel supports are not significantly different from those without energy dissipation devices.The assembled frame structure with viscoelastic damper has better seismic performance and energy dissipation,especially for the viscoelastic damper with displacement amplification devices.The maximum value of inter-story displacement angle decreases by 32.24%;the maximum floor displacement decreases by 31.91%,and the base shear decreases by 13.62%compared with the assembled frame structures without energy dissipation devices.The results show that the seismic fortification ability of the structure is significantly improved,and the overall structure is more uniformly stressed.The damping structure with viscoelastic damper mainly reduces the dynamic response of the structure by increasing the damping coefficient,rather than by changing the natural vibration period of the structure.This paper provides an effective theoretical basis and reference for improving the energy dissipation system and the seismic performance of assembled frame structures. 展开更多
关键词 Assembled frame structure energy dissipation devices response spectrum analysis viscoelastic damper
下载PDF
Discussion on Construction Technology and Welding Deformation of High-Rise Steel Frame Structure
3
作者 Sijin He Xinzhong Leng 《Journal of World Architecture》 2023年第5期23-28,共6页
Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction indu... Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction industry.However,the construction of high-rise steel frame structures requires advanced technology.If the construction technology is effectively implemented and the welding techniques of the construction personnel align with the requirements for high-rise steel frame structures,it can help mitigate deformations in the steel structure,thus preserving the overall construction quality of high-rise steel frame structures.To enhance the applicability of steel frame structures in high-rise buildings,this paper focuses on analyzing the optimization path for the construction process of high-rise steel frame structures.It introduces a tailored approach to control welding-induced deformations in steel frame structures,aiming to make a valuable contribution to the advancement of China’s construction industry. 展开更多
关键词 High-rise steel frame structure Construction technology Welding deformation structural stability
下载PDF
Independent continuous mapping for topological optimization of frame structures 被引量:10
4
作者 Yunkang Sui Jiazheng Du Yingqiao Guo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第6期611-619,共9页
Based on the Independent Continuous Mapping method (ICM), a topological optimization model with continuous topological variables is built by introducing three filter functions for element weight, element allowable s... Based on the Independent Continuous Mapping method (ICM), a topological optimization model with continuous topological variables is built by introducing three filter functions for element weight, element allowable stress and element stiffness, which transform the 0-1 type discrete topological variables into continuous topological variables between 0 and 1. Two methods for the filter functions are adopted to avoid the structural singularity and recover falsely deleted elements: the weak material element method and the tiny section element method. Three criteria (no structural singularity, no violated constraints and no change of structural weight) are introduced to judge iteration convergence. These criteria allow finding an appropriate threshold by adjusting a discount factor in the iteration procedure. To improve the efficiency, the original optimization model is transformed into a dual problem according to the dual theory and solved in its dual space. By using MSC/Nastran as the structural solver and MSC/Patran as the developing platform, a topological optimization software of frame structures is accomplished. Numerical examples show that the ICM method is very efficient for the topological optimization of frame structures. 展开更多
关键词 frame structures Topological optimization ICM method Filter functions Element elimination
下载PDF
Evaluation of collapse resistance of RC frame structures for Chinese schools in seismic design categories B and C 被引量:8
5
作者 Tang Baoxin Lu Xinzheng +1 位作者 Ye Lieping Shi Wei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第3期369-377,共9页
According to the Code for Seismic Design of Buildings (GB50011-2001), ten typical reinforced concrete (RC) frame structures, used as school classroom buildings, are designed with different seismic fortification in... According to the Code for Seismic Design of Buildings (GB50011-2001), ten typical reinforced concrete (RC) frame structures, used as school classroom buildings, are designed with different seismic fortification intensities (SFIs) (SFI=6 to 8.5) and different seismic design categories (SDCs) (SDC=B and C). The collapse resistance of the frames with SDC=B and C in terms of collapse fragility curves are quantitatively evaluated and compared via incremental dynamic analysis (IDA). The results show that the collapse resistance of structures should be evaluated based on both the absolute seismic resistance and the corresponding design seismic intensity. For the frames with SFI from 6 to 7.5, because they have relatively low absolute seismic resistance, their collapse resistance is insufficient even when their corresponding SDCs are upgraded from B to C. Thus, further measures are needed to enhance these structures, and some suggestions are proposed. 展开更多
关键词 RC frame structures collapse resistance fragility curves seismic fortification intensity incremental dynamic analysis mega-earthquake
下载PDF
Self-centering seismic retrofit scheme for reinforced concrete frame structures:SDOF system study 被引量:4
6
作者 Yunfeng Zhang and Xiaobin Hu Department of Civil and Environmental Engineering,University of Maryland,College Park,MD 20742,USA 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第2期271-283,共13页
This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and min... This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and minimal residual deformation. For comparison purpose,an alternate seismic retrofit scheme that uses a bilinear-hysteresis retrofit system such as buckling-restrained braces (BRB) is also considered in this paper. The parametric study was carried out in a single-degree-of-freedom (SDOF) system framework since a multi-story building structure may be idealized as an equivalent SDOF system and investigation of the performance of this equivalent SDOF system can provide insight into the seismic response of the multi-story building. A peak-oriented hysteresis model which can consider the strength and stiffness degradation is used to describe the hysteretic behavior of RC structures. The parametric study involves two key parameters -the strength ratio and elastic stiffness ratio between the seismic retrofit system and the original RC frame. An ensemble of 172 earthquake ground motion records scaled to the design basis earthquake in California with a probability of exceedance of 10% in 50 years was constructed for the simulation-based parametric study. The effectiveness of the two seismic retrofit schemes considered in this study is evaluated in terms of peak displacement ratio,peak acceleration ratio,energy dissipation demand ratio and residual displacement ratio between the SDOF systems with and without retrofit. It is found from this parametric study that RC structures retrofitted with the self-centering retrofit scheme (SCRS) can achieve a seismic performance level comparable to the bilinear-hysteresis retrofit scheme (BHRS) in terms of peak displacement and energy dissipation demand ratio while having negligible residual displacement after earthquake. 展开更多
关键词 EARTHQUAKE reinforced concrete frame structure nonlinear analysis SDOF system seismic retrofit SELF-CENTERING
下载PDF
Effects of material of metallic frame on the penetration resistances of ceramic-metal hybrid structures 被引量:7
7
作者 Xuanyi An Chao Tian +1 位作者 Qitian Sun Yongxiang Dong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第1期77-87,共11页
The effects of metallic material on the penetration resistances of ceramic-metal hybrid structures against vertical long-rod tungsten projectiles were studied by artillery-launched experiments and numerical simulation... The effects of metallic material on the penetration resistances of ceramic-metal hybrid structures against vertical long-rod tungsten projectiles were studied by artillery-launched experiments and numerical simulation.Hybrid structures with rectangular cores in transverse orthogonal arrangement and slidefitting ceramic inserts of zirconia toughened alumina prisms were fabricated with titanium alloy TC4(Ti6 Al4 V),AISI 4340 steel and 7075 aluminum alloy panels,respectively.The results showed that the hybrid structure of Ti6A14V exhibited the highest penetration resistance,followed by that of 7075 aluminum alloy with the same area density.The penetration resistance of the hybrid structure of AISI4340 steel was the lowest.The underlying mechanisms showed that the metallic material of a ceramicmetal hybrid structure can directly affect its energy absorption from the impact projectile,which further affects its penetration resistance.Different metallic frames exhibited different failure characteristics,resulting in different constraint conditions or support conditions for ceramic prisms.The high penetration resistance of the Ti6Al4V hybrid structure was due to its stronger back support to ceramic prisms as compared with that of AISI 4340 steel hybrid structure,and better constraint condition for ceramic prisms by metallic webs as compared with that of 7075 aluminum alloy hybrid structure.The results of mass efficiency and thickness efficiency showed that the Ti6Al4V hybrid structure has advantages in reducing both the thickness and the mass of protective structure.In addition,because the ceramic-metal hybrid structures in the present work were heterogeneous,impact position has slight influence on their penetration resistances. 展开更多
关键词 Hybrid structures ZIRCONIA toughened alumina PENETRATION resistance Long-rod PROJECTILE METALLIC frame
下载PDF
Investigation on seismic response of a three-stage soil slope supported by anchor frame structure 被引量:5
8
作者 LIN Yu-liang LI Ying-xin +1 位作者 ZHAO Lian-heng YANG T Y 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期1290-1305,共16页
Based on a typical prototype of a soil slope in engineering practice, a numerical model of a three-stage soil slope supported by the anchor frame structure was established by means of FLAC3D code. The dynamic response... Based on a typical prototype of a soil slope in engineering practice, a numerical model of a three-stage soil slope supported by the anchor frame structure was established by means of FLAC3D code. The dynamic responses of three-stage soil slope and frame structure were studied by performing a series of bidirectional Wenchuan motions in terms of the failure mode of three-stage structure, the acceleration of soil slope, the displacement of frame structure, and the anchor stress of frame structure. The response accelerations in both horizontal and vertical directions are the most largely amplified at the slope top of each stage subjected to different shaking cases. The platforms among the stages reduce the amplification effect of response acceleration. The residual displacement of frame structure increases significantly as the intensity of shaking case increases. The frame structure at each stage presents a combined displacement mode consisting of a translation and a rotation around the vertex. The anchor stress of frame structure is mainly increased by the first intense pulse of Wenchuan seismic wave, and it is sensitive to the intensity of shaking case. The anchor stress of frame structure at the first stage is the most considerably enlarged by earthquake loading. 展开更多
关键词 three-stage soil slope anchor frame structure ACCELERATION DISPLACEMENT anchor stress
下载PDF
Study of the seismic response of a recycled aggregate concrete frame structure 被引量:2
9
作者 Wang Changqing Xiao Jianzhuang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期669-680,共12页
Based on six-degree-of-freedom three-dimensional shaking table tests, the seismic response of a recycled aggregate concrete (RAC) frame was obtained. The analysis results indicate that the maximum story shear force ... Based on six-degree-of-freedom three-dimensional shaking table tests, the seismic response of a recycled aggregate concrete (RAC) frame was obtained. The analysis results indicate that the maximum story shear force and overturning moment reduce proportionally along the height of the model under the same earthquake wave. The story shear force, base shear coefficient and overturning moment of the structure increase progressively as the acceleration amplitude increases. The base shear coefficient is primarily controlled by the peak ground acceleration (PGA). The relationships between the PGA and the shear coefficient as well as between the PGA and the dynamic amplification factor are obtained by mathematical fitting. The dynamic amplification factor decreases rapidly at the elastic-plastic stage, but decreases slowly with the development of the elastic-plasticity stage. The results show that the RAC frame structure has reasonable deformability when compared with natural aggregate concrete frame structures. The maximum inter-story drift ratios of the RAC frame model under frequent and rare intensity 8 test phases are 1/266 and 1/29, respectively, which are larger than the allowable value of 1/500 and 1/50 according to Chinese seismic design requirements. Nevertheless, the RAC frame structure does not collapse under base excitations with PGAs from 0.066 g up to 1.170 g. 展开更多
关键词 recycled aggregate concrete (RAC) frame structure seismic response shear coefficient dynamicamplification factor
下载PDF
Numerical Simulation of Dynamic Response and Collapse for Steel Frame Structures Subjected to Blast Load 被引量:4
10
作者 张秀华 段忠东 张春巍 《Transactions of Tianjin University》 EI CAS 2008年第B10期523-529,共7页
The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite ele... The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground, multiple ALE element for simulating air and TNT explosive material. Numerical simulations of the blast pressure wave propagation, struc-tural dynamic responses and deformation, and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed. The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure. The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation. The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic defor-mation subjected to intensive blast waves, and columns lost carrying capacity, subsequently lead-ing to the collapse of the whole structure. The approach coupling influence between struc-tural deformation and fluid load well simulated the progressive collapse process of structures, and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load. 展开更多
关键词 blast load progressive collapse steel frame structures numerical simulation finite element
下载PDF
Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model 被引量:6
11
作者 Jun Yan Zunyi Duan +1 位作者 Erik Lund Guozhong Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期430-441,共12页
This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the ... This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries. 展开更多
关键词 Composite frame structure Multi-scale optimization Topology optimization Fiber winding angle structural compliance
下载PDF
Method of reverberation ray matrix for static analysis of planar framed structures composed of anisotropic Timoshenko beam members 被引量:2
12
作者 Jiao ZHANG Guohua NIE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第2期233-242,共10页
Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for st... Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for static analysis of such structures.In the MRRM for dynamic analysis, amplitudes of arriving and departing waves for joints are chosen as unknown quantities. However, for the present case of static analysis, displacements and rotational angles at the ends of each beam member are directly considered as unknown quantities. The expressions for stiffness matrices for anisotropic beam members are developed. A corresponding reverberation matrix is derived analytically for exact and unified determination on the displacements and internal forces at both ends of each member and arbitrary cross sectional locations in the structure. Numerical examples are given and compared with the finite element method(FEM) results to validate the present model. The characteristic parameter analysis is performed to demonstrate accuracy of the present model with the T beam theory in contrast with errors in the usual model based on the Euler-Bernoulli(EB) beam theory. The resulting reverberation matrix can be used for exact calculation of anisotropic framed structures as well as for parameter analysis of geometrical and material properties of the framed structures. 展开更多
关键词 planar framed structure ANISOTROPIC Timenshenko(T) beam stiffness matrix method of reverberation ray matrix(MRRM) static analysis
下载PDF
Structure optimization of connection frames based on frequency sensitivity in macro-micro motion platforms 被引量:1
13
作者 Lufan Zhang Xueli Li +3 位作者 Haihong Zhang Haixin Li Hu Li Jun Wu 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2019年第1期40-47,共8页
High-performance connection frames are of great significance for ultra-high acceleration and ultra-precision positioning in macro-micro motion platforms. This paper first takes the connection frame as a research objec... High-performance connection frames are of great significance for ultra-high acceleration and ultra-precision positioning in macro-micro motion platforms. This paper first takes the connection frame as a research object,builds a finite element model(FEM) of the natural frequency of the frame, and then verifies the correctness of this model. The frequency sensitivity method is then used to perturb the structural parameters of the FEM of the connection frame, and the sensitivities of the first-order natural frequency and mass of the corresponding structural parameters are obtained by calculation and analysis. The design variables are also determined. The natural frequency is used as the optimization objective, and the design parameters and mass of the connection frame are constrained. The structural parameters of the connecting frame are obtained through optimization, and the model is built and verified by experiments. The results show that the first-order natural frequency of the connecting frame is effectively improved by the frequency sensitivity method, avoids resonance between the connecting frame and the voice coil motor, and realizes the lightweight design of the connection frame. This research provides a reliable basis for the stable operation and ultra-precision positioning of ultra-high acceleration macro-motion platforms. 展开更多
关键词 Ultra-high ACCELERATION CONNECTION frame NATURAL frequency Sensitivity structure optimization
下载PDF
Selection and modification of ground motion records using Newmark-Hall spectrum as target spectrum for long-period structures
14
作者 Fu Jianyu Wang Dongsheng +1 位作者 Zhang Rui Chen Xiaoyu 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第1期117-134,共18页
Input ground motions have significant impacts on the uncertainty of structural responses in time-history analysis.In this study,records were selected and scaled for the evaluation of mean structural responses accordin... Input ground motions have significant impacts on the uncertainty of structural responses in time-history analysis.In this study,records were selected and scaled for the evaluation of mean structural responses according to the target spectrum.The Newmark-Hall spectrum is closely related to seismic response of short,medium and long-period structures,so it was taken as the target spectrum here.The nonlinear time-history analyses of 9-story and 20-story steel moment-resisting frame structures were carried out as examples.They represent medium and long-period buildings,respectively.Three target spectra with risk of 50%,10%and 2%probabilities for exceedance in 50 years were calculated by the average Newmark-Hall spectrum method for three ground motion sets developed in the SAC Steel Project.The predicted structural mean responses of these Newmark-Hall spectra were compared with those calculated by the average spectral acceleration method for the same record set.It is found that both methods have similar accuracy for estimating the structural mean response.However,the method proposed herein is more effective in reducing the variability of the structural responses.Also,the proposed method is more advantageous for the time-history analysis of long-period structures or structures with more severe nonlinear responses under strong seismic excitations. 展开更多
关键词 time-history analysis selection and modification of ground motions target spectrum Newmark-Hall spectrum steel moment resisting frame structure
下载PDF
Research on stretching flame correction technology of aluminum alloy ship frame skin welding structure 被引量:2
15
作者 Yuan Yinhui Nie Lijun +2 位作者 Lu Hao Yu Yang Yan Dejun 《China Welding》 CAS 2022年第2期15-22,共8页
At present,conventional flame correction has shortcomings such as random heating route and low efficiency.The welding seam of the aluminum alloy ship frame skin structure is concentrated and the frame restraint is lar... At present,conventional flame correction has shortcomings such as random heating route and low efficiency.The welding seam of the aluminum alloy ship frame skin structure is concentrated and the frame restraint is large.It is difficult to control and eliminate the local convex deformation after welding.In order to improve the conventional orthopedic technology and improve the orthopedic efficiency,the pre-elastic deformation technology is proposed.Using the method of combining numerical simulation and experiment,the orthopedic effect of conventional and pre-elastic orthopedic technology is studied,and the influence of pre-deformation variables and heating path on deformation control of the frame skin structure after welding is simulated.The simulation results show that the technical key to the control of convex deformation lies in the control of the pre-elastic deformation and the setting of the heating route.The experimental verification results show that the pre-elastic deformation technology has a better control effect than conventional orthopedics,can significantly improve the orthopedic efficiency,and provides a new method for deformation control in the shipbuilding industry. 展开更多
关键词 prestress-flame correction process frame skin structure aluminum alloy numerical simulation
下载PDF
Nonlinear damage model for seismic damage assessment of reinforced concrete frame members and structures 被引量:1
16
作者 Shuijing Xiao Longhe Xu Xiao Lu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第5期949-962,共14页
A nonlinear damage model based on the combination of deformation and hysteretic energy and its validation with experiments are presented.Also,a combination parameter is defined to consider the mutual effect of deforma... A nonlinear damage model based on the combination of deformation and hysteretic energy and its validation with experiments are presented.Also,a combination parameter is defined to consider the mutual effect of deformation and hysteretic energy for different types of components in different loading stages.Four reinforced concrete (RC) columns are simulated and analyzed using the nonlinear damage model.The results indicate that the damage evolution evaluated by the model agrees well with the experimental phenomenon.Furthermore,the seismic damage evolution of a six-story RC frame was analyzed,revealing four typical failure modes according to the interstory drift distribution of the structure;the damage values calculated using the nonlinear damage model agree well with the four typical failure modes. 展开更多
关键词 RC frame structure NONLINEAR DAMAGE model DAMAGE evolution COMBINATION PARAMETER Hysteretic energy
下载PDF
Influence of Shape and Size of Threshing Frame and Tobacco Grade on Leaf Strip Structure 被引量:2
17
作者 CHEN Zhuang-yu HE Ze-jun +2 位作者 LI Ye-chun HUANG Jing HUANG Ya-fei 《Agricultural Science & Technology》 CAS 2020年第3期18-24,共7页
This paper focused on the influence of the shape and size of threshing frames as well as the grades of tobacco leaves on the structure of threshed leaves.The testing tobacco leaves all came from the hilly ecological r... This paper focused on the influence of the shape and size of threshing frames as well as the grades of tobacco leaves on the structure of threshed leaves.The testing tobacco leaves all came from the hilly ecological region of Nanling and belonged to burnt sweet,alcoholic sweet and scent category.The comprehensive evaluating value S was taken as the test index.Results showed that,without considering the influence of tobacco grade on leaf structure,the shapes of first-stage thresher five-link frames were all hexagons,and the combination with the sizes of 3.5,3.0,3.5,3.0,3.0 inches had the highest evaluating value S of 2.49.For tobacco grade C2FH,the shapes of first-stage thresher five-link frames were also hexagons,and the evaluating value S reached the highest value of 3.40 with sizes of 3.5,3.0,3.5,3.0,3.0 inches.Comprehensive analysis showed that:3.0 inch frame performed better in controlling the percentage of large-sized strips than 3.5 inch frame did;rhombic frames were better than hexagon frames in reducing the breakage rate of tobacco leaves;different shapes or sizes of nonadjacent two-link frames can help to improve the threshing quality. 展开更多
关键词 Threshing frame Leaf strip structure Percentage of medium-sized strips Shape and size
下载PDF
New Factor to Characterize Mechanism of “Strong Column-Weak Beam” of RC Frame Structures 被引量:1
18
作者 李心霞 公茂盛 +1 位作者 韩庆华 谢礼立 《Transactions of Tianjin University》 EI CAS 2015年第6期484-491,共8页
Most reinforced concrete(RC)frame structures did not achieve the "strong column-weak beam" failure mode in recent big earthquakes, resulting in a large number of casualties and significant property loss. To ... Most reinforced concrete(RC)frame structures did not achieve the "strong column-weak beam" failure mode in recent big earthquakes, resulting in a large number of casualties and significant property loss. To deal with this serious problem, a new column-beam relative factor was proposed to characterize the relative yield situation of column ends and beam ends. By limiting the column-beam relative factor, RC frame structures could achieve the "strong column-weak beam" failure mode under the excitation of strong ground motions. The limit values of column-beam relative factor were calculated, analyzed and verified by using structural simulation models for corner columns in the bottom story of structures, which are destroyed most seriously in earthquakes. The results show that the limit values should be analyzed under bi-directional ground motion and with different axial compression ratios of columns. The peak ground acceleration(PGA)of ground motions has no significant effect on the limit values, while the type of strong ground motions has a significant effect on the limit values. 展开更多
关键词 RC frame structure strong column-weak beam limit value of column-beam relative factor moment magnification factor at column end
下载PDF
ANALYSIS ON IMPACT RESPONSES OF UNRESTRAINED PLANAR FRAME STRUCTURE(Ⅰ)—FORMULA DERIVATION
19
作者 陈镕 郑海涛 +2 位作者 薛松涛 唐和生 HE Fu-bao 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第11期1449-1457,共9页
The generalized Fourier-series method was used to derive the impact responses formula of an unrestrained planar frame structure when subjected to an impact of a moving rigid-body. By using these formula, the analytic ... The generalized Fourier-series method was used to derive the impact responses formula of an unrestrained planar frame structure when subjected to an impact of a moving rigid-body. By using these formula, the analytic solutions of dynamic responses of the contact-impact system can be obtained. During the derivation, the momentum sum of elastic responses of the contact-impact system is demonstrated to be zero. From the derivation, it is seen that the modal method can also be used to solve this kind of impact problem. 展开更多
关键词 unrestrained planar frame structure impact rigid response elastic response
下载PDF
Pseudo-dynamic test and numerical simulation of high-strength concrete frame structure reinforced with high-strength rebars
20
作者 Chen Xin Yan Shi Ji Baojian 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第2期303-311,共9页
This paper describes an investigation of a high-strength concrete frame reinforced with high-strength rebars that was tested in the structure engineering laboratory at Shenyang Jianzhu University. The frame specimen w... This paper describes an investigation of a high-strength concrete frame reinforced with high-strength rebars that was tested in the structure engineering laboratory at Shenyang Jianzhu University. The frame specimen was pseudo- dynamically loaded to indicate three earthquake ground motions of different hazard levels, after which the test specimen was subjected to a pseudo-static loading. This paper focuses on the design, construction and experiment of the test frame and validation of the simulation models. Research shows that a high-strength concrete frame reinforced with high-strength rebars is more efficient and economical than a traditional reinforced concrete frame structure. In addition to the economies achieved by effective use of materials, research shows that the frame can provide enough strength to exceed conventional reinforced concrete frames and provide acceptable ductility. The test study provides evidence to validate the performance of a high- strength concrete frame designed according to current seismic code provisions. Based on previous test research, a nonlinear FEM analysis is completcd by using OpenSees software, The dynamic responses of the frame structure are numerically analyzed, The results of the numerical simulation show that the model can calculate the seismic responses of the frame by OpenSees. At the same time, the test provides additional opportunities to validate the performance of the simulation models. 展开更多
关键词 high-strength concrete pseudo dynamic test seismic response analysis frame structure finite elementmethod OPENSEES
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部