Laying head is a high-precision engineering device in hot-rolled high speed wire rod production line. Previously research works are focused on the laying pipe wear-resisting. Laying pipe curve design method based on w...Laying head is a high-precision engineering device in hot-rolled high speed wire rod production line. Previously research works are focused on the laying pipe wear-resisting. Laying pipe curve design method based on wire rod kinematics and dynamics analyses are not reported before. In order to design and manufacture the laying pipe, the motion and force process of the wire rod in the laying pipe should be studied. In this paper, a novel approach is proposed to investigate the force modeling for hot-rolled wire rod in laying pipe. An idea of limited element method is used to analysis and calculates the forces between laying pipe inner surface and wire rod. The design requirements of laying pipe curve for manufacturing are discussed. The kinematics and dynamics modeling for numerical calculation are built. A laying pipe curve equation is proposed by discussing design boundary conditions. Numerical results with di erent laying pipe curves design parameters are plotted and compared. The proposed approach performs good result which can be applied for laying pipe curve design and analysis for engineering application.展开更多
A finite element modeling technique is employed in this paper to predict the force transmissibility of tire-cavity-wheel assembly under a free-fixed condition. The tire and wheel force transmissibility is factor in st...A finite element modeling technique is employed in this paper to predict the force transmissibility of tire-cavity-wheel assembly under a free-fixed condition. The tire and wheel force transmissibility is factor in structure borne road noise performance. In order to improve structure borne noise, it is required to lower the 1st peak frequency of force transmissibility. This paper presents an application of finite element analysis modeling along with experimental verification to predict the force transmissibility of tire and wheel assembly. The results of finite element analysis for force transmissibility are shown to be in good agreement with the results from the indoor test. In order to improve structure borne noise, it is required to lower the 1st peak frequency of force transmissibility. And, the effect of the tire design parameters such as the density and modulus of a rubber and the cord stiffness on the force transmissibility is discussed. It is found that the prediction of the force transmissibility model using finite element analysis will be useful for the improvement of the road noise performance of passenger car tire.展开更多
For the application of the time-temperature superposition principle a suitable relation is needed to describe the time-temperature shift factor a. Therefore, the Arrhenius equation is widely used due to its simple for...For the application of the time-temperature superposition principle a suitable relation is needed to describe the time-temperature shift factor a. Therefore, the Arrhenius equation is widely used due to its simple form and often leads to suitable results. Where, the Arrhenius equation presents a linear relation for the temperature-dependent shift factor in logarithmic scale ln(α) with the absolute inverse temperature (1/θ). However, in cases with a large temperature range which eventually include more complex reaction processes, the functional relation between ln(α) and (1/θ) is nonlinear in the 'Arrhenius plot'. In those cases, the monotone change of the nonlinear range in the 'Arrhenius plot' can be interpreted as a transient range between two approximately linear or constant regions. An extended application of the modified Arrhenius equation from Nakamura (1989) is presented in this study for this transient range. The introduced method was applied to describe the time-temperature equivalence in the relaxation analysis of restoring seal force of metal seals, which are used in lid-systems of transport and interim storage casks for radioactive materials. But, the method is widely valid and can be used for different objectives which are characterized by thermorheologically simple behavior with nonlinear sensitivity to inverse temperature.展开更多
A water rocket is a rocket system that obtains thrust by injecting water with compressed air of up to about 8 atmospheres. It is usually manufactured using a pressure-resistant PET bottle. The mechanical elements and ...A water rocket is a rocket system that obtains thrust by injecting water with compressed air of up to about 8 atmospheres. It is usually manufactured using a pressure-resistant PET bottle. The mechanical elements and principles contained in the water rocket have much in common with the actual small rocket system, and are suitable as educational and research teaching materials in the field of mechanics. Especially in the field of disaster prevention and mitigation, the use of water rockets is being researched and developed as a rescue tool in the event of a flood or earthquake as a disaster countermeasure. However, since the water rocket is a flying object based on the mechanical principle, it is important to ensure the accuracy and stability of the flight path. In this paper, a mechanical simulator is developed with a numerical calculation program based on the mechanical consideration of water rocket flight performance. In addition, the correlation between the flight distance obtained in the simulation and the estimated flight distance is analyzed by applying a multivariate analysis method and verifying the validity of the flight distance calculated from the result. Based on the verification results, we will apply a statistical optimization method to approach the optimization of flight stability performance conditions for water rockets.展开更多
The paper designs a parallel filter based on wavelets theory,a design algorithm of parallel wavelet filter is given and proved. The filter is composed of sampler, prefilter, analyser,frequency subsection processor and...The paper designs a parallel filter based on wavelets theory,a design algorithm of parallel wavelet filter is given and proved. The filter is composed of sampler, prefilter, analyser,frequency subsection processor and synthesizer,the principle of the filter is discussed in detail. The design can be applied in the field which need time-frequency localization.展开更多
A finite element modeling technique is employed in this paper to predict the groove wander of longitudinal tread grooved tires. In generally, groove wander is the lateral force acting on a vehicle’s wheel resulting f...A finite element modeling technique is employed in this paper to predict the groove wander of longitudinal tread grooved tires. In generally, groove wander is the lateral force acting on a vehicle’s wheel resulting from the combination of rain grooves. If the lateral force of tire is generated by groove wander, unexpected lateral motion of vehicle will happen and it makes drivers uncomfortable. This paper describes the effect of groove wander according to the shape condition of tire tread groove and highway groove using the finite element analysis based on a static loading or a steady-state rolling assumption. The road groove can be located anywhere relative to the longitudinal tread groove. Therefore, the lateral force of the tire is changing depending on the location of the groove road. The numerical results for groove wander prediction of the longitudinal tread grooved tires are compared with the subjective evaluation. It is found that the waveform for the tire with varying grooved road position has a peak-to-peak lateral force in order to estimate the rating of groove wander. The effect of the road groove width and the pitch length on the peak-to-peak lateral force of tire is discussed. It is found that the prediction of FEA-based groove wander model using finite element analysis will be useful for the reliability design of the tire tread pattern design.展开更多
Nowadays, a highly integrated valve?controlled cylinder(HIVC) is applied to drive the joints of legged robots. Although the adoption of HIVC has resulted in high?performance robot control, the hydraulic force system s...Nowadays, a highly integrated valve?controlled cylinder(HIVC) is applied to drive the joints of legged robots. Although the adoption of HIVC has resulted in high?performance robot control, the hydraulic force system still has problems, such as strong nonlinearity, and time?varying parameters. This makes HIVC force control very diffcult and complex. How to improve the control performance of the HIVC force control system and find the influence rule of the system parameters on the control performance is very significant. Firstly, the mathematical model of HIVC force control system is established. Then the mathematical expression for parameter sensitivity matrix is obtained by applying matrix sensitivity analysis(PSM). Then, aimed at the sinusoidal response under(three factors and three levels) working conditions, the simulation and the experiment are conducted. While the error between the simulation and experiment can’t be avoided. Therefore, combined with the range analysis, the error in the two performance indexes of sinusoidal response under the whole working condition is analyzed. Besides, the sensitivity variation pattern for each system parameter under the whole working condition is figured out. Then the two sensitivity indexes for the three system parameters, which are supply pressure, proportional gain and initial displacement of piston, are proved experimentally. The proposed method significantly reveals the sensitivity characteristics of HIVC force control system, which can make the contribution to improve the control performance.展开更多
This paper presents a comparison of the seismic forces generated from a Modal Response Spectrum Analysis (MRSA) by applying the provisions of two building codes, the 1997 Uniform Building Code (UBC) and the 2000-2...This paper presents a comparison of the seismic forces generated from a Modal Response Spectrum Analysis (MRSA) by applying the provisions of two building codes, the 1997 Uniform Building Code (UBC) and the 2000-2009 International Building Code (IBC), to the most common ordinary residential buildings of standard occupancy. Considering IBC as the state of the art benchmark code, the primary concern is the safety of buildings designed using the UBC as compared to those designed using the IBC. A sample of four buildings with different layouts and heights was used for this comparison. Each of these buildings was assumed to be located at four different geographical sample locations arbitrarily selected to represent various earthquake zones on a seismic map of the USA, and was subjected to code-compliant response spectrum analyses for all sample locations and for five different soil types at each location. Response spectrum analysis was performed using the ETABS software package. For all the cases investigated, the UBC was found to be significantly more conservative than the IBC. The UBC design response spectra have higher spectral accelerations, and as a result, the response spectrum analysis provided a much higher base shear and moment in the structural members as compared to the IBC. The conclusion is that ordinary office and residential buildings designed using UBC 1997 are considered to be overdesigned, and therefore they are quite safe even according to the IBC provisions.展开更多
Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass a...Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.展开更多
The precise hydraulic valve is widely used in various industrial fields like aircraft, automobile and general machinery. Linear actuator is the most important device for driving the precise hydraulic valve. The reliab...The precise hydraulic valve is widely used in various industrial fields like aircraft, automobile and general machinery. Linear actuator is the most important device for driving the precise hydraulic valve. The reliable operation of linear actuator has effects on the overall hydraulic system. The performance of linear actuator relies on frequency response and step response according to arbitrary input signal. In this paper, the analysis for the components of linear actuator is performed to satisfy the reliable operation and response characteristics through the reliability analysis, and also deducted the design equations to realize the reliable operation and fast response characteristics of voice coil type linear actuator for servo valve operation through the empirical knowledge of experts and electromagnetic theories. The design equations are suggested to determine the values of design parameters of linear actuator as like bobbin size, length of yoke and plunger and turn number of coil, and calculated the life test time of linear actuator for verification of reliability of the prototype. In addition, for reducing the life test time, the acceleration model of linear actuator is proposed and the acceleration factor is calculated considering the field operating conditions. And then, the achieved design values are verified through accelerated life test and performance tests using some prototypes of linear actuators adapted in servo valve.展开更多
The UHVAC 1 000-kV transmission system is so far the one with the most advanced transmission technique applied and highest operation voltage.There are no guidelines or standards available for the design of 1 000-kV ov...The UHVAC 1 000-kV transmission system is so far the one with the most advanced transmission technique applied and highest operation voltage.There are no guidelines or standards available for the design of 1 000-kV overhead transmission line in China.Study on key technologies and design schemes shall be carried out to ascertain the technical principles and construction standards for project construction,which are presented in this paper based on the Southeast Shanxi-Nanyang-Jingmen test and demonstration transmission line.A comparison and analysis of technical data and economic indices between UHV line and other lines are also described.展开更多
In this paper,based on simplified Boltzmann equation,we explore the inverse-design of mesoscopic models for compressible flow using the Chapman-Enskog analysis.Starting from the single-relaxation-time Boltzmann equati...In this paper,based on simplified Boltzmann equation,we explore the inverse-design of mesoscopic models for compressible flow using the Chapman-Enskog analysis.Starting from the single-relaxation-time Boltzmann equation with an additional source term,two model Boltzmann equations for two reduced distribution functions are obtained,each then also having an additional undetermined source term.Under this general framework and using Navier-Stokes-Fourier(NSF)equations as constraints,the structures of the distribution functions are obtained by the leading-order Chapman-Enskog analysis.Next,five basic constraints for the design of the two source terms are obtained in order to recover the NSF system in the continuum limit.These constraints allow for adjustable bulk-to-shear viscosity ratio,Prandtl number as well as a thermal energy source.The specific forms of the two source terms can be determined through proper physical considerations and numerical implementation requirements.By employing the truncated Hermite expansion,one design for the two source terms is proposed.Moreover,three well-known mesoscopic models in the literature are shown to be compatible with these five constraints.In addition,the consistent implementation of boundary conditions is also explored by using the Chapman-Enskog expansion at the NSF order.Finally,based on the higher-order Chapman-Enskog expansion of the distribution functions,we derive the complete analytical expressions for the viscous stress tensor and the heat flux.Some underlying physics can be further explored using the DNS simulation data based on the proposed model.展开更多
基金China Postdoctoral Science Foundation Project(Grant No.2017M611184)
文摘Laying head is a high-precision engineering device in hot-rolled high speed wire rod production line. Previously research works are focused on the laying pipe wear-resisting. Laying pipe curve design method based on wire rod kinematics and dynamics analyses are not reported before. In order to design and manufacture the laying pipe, the motion and force process of the wire rod in the laying pipe should be studied. In this paper, a novel approach is proposed to investigate the force modeling for hot-rolled wire rod in laying pipe. An idea of limited element method is used to analysis and calculates the forces between laying pipe inner surface and wire rod. The design requirements of laying pipe curve for manufacturing are discussed. The kinematics and dynamics modeling for numerical calculation are built. A laying pipe curve equation is proposed by discussing design boundary conditions. Numerical results with di erent laying pipe curves design parameters are plotted and compared. The proposed approach performs good result which can be applied for laying pipe curve design and analysis for engineering application.
文摘A finite element modeling technique is employed in this paper to predict the force transmissibility of tire-cavity-wheel assembly under a free-fixed condition. The tire and wheel force transmissibility is factor in structure borne road noise performance. In order to improve structure borne noise, it is required to lower the 1st peak frequency of force transmissibility. This paper presents an application of finite element analysis modeling along with experimental verification to predict the force transmissibility of tire and wheel assembly. The results of finite element analysis for force transmissibility are shown to be in good agreement with the results from the indoor test. In order to improve structure borne noise, it is required to lower the 1st peak frequency of force transmissibility. And, the effect of the tire design parameters such as the density and modulus of a rubber and the cord stiffness on the force transmissibility is discussed. It is found that the prediction of the force transmissibility model using finite element analysis will be useful for the improvement of the road noise performance of passenger car tire.
文摘For the application of the time-temperature superposition principle a suitable relation is needed to describe the time-temperature shift factor a. Therefore, the Arrhenius equation is widely used due to its simple form and often leads to suitable results. Where, the Arrhenius equation presents a linear relation for the temperature-dependent shift factor in logarithmic scale ln(α) with the absolute inverse temperature (1/θ). However, in cases with a large temperature range which eventually include more complex reaction processes, the functional relation between ln(α) and (1/θ) is nonlinear in the 'Arrhenius plot'. In those cases, the monotone change of the nonlinear range in the 'Arrhenius plot' can be interpreted as a transient range between two approximately linear or constant regions. An extended application of the modified Arrhenius equation from Nakamura (1989) is presented in this study for this transient range. The introduced method was applied to describe the time-temperature equivalence in the relaxation analysis of restoring seal force of metal seals, which are used in lid-systems of transport and interim storage casks for radioactive materials. But, the method is widely valid and can be used for different objectives which are characterized by thermorheologically simple behavior with nonlinear sensitivity to inverse temperature.
文摘A water rocket is a rocket system that obtains thrust by injecting water with compressed air of up to about 8 atmospheres. It is usually manufactured using a pressure-resistant PET bottle. The mechanical elements and principles contained in the water rocket have much in common with the actual small rocket system, and are suitable as educational and research teaching materials in the field of mechanics. Especially in the field of disaster prevention and mitigation, the use of water rockets is being researched and developed as a rescue tool in the event of a flood or earthquake as a disaster countermeasure. However, since the water rocket is a flying object based on the mechanical principle, it is important to ensure the accuracy and stability of the flight path. In this paper, a mechanical simulator is developed with a numerical calculation program based on the mechanical consideration of water rocket flight performance. In addition, the correlation between the flight distance obtained in the simulation and the estimated flight distance is analyzed by applying a multivariate analysis method and verifying the validity of the flight distance calculated from the result. Based on the verification results, we will apply a statistical optimization method to approach the optimization of flight stability performance conditions for water rockets.
文摘The paper designs a parallel filter based on wavelets theory,a design algorithm of parallel wavelet filter is given and proved. The filter is composed of sampler, prefilter, analyser,frequency subsection processor and synthesizer,the principle of the filter is discussed in detail. The design can be applied in the field which need time-frequency localization.
文摘A finite element modeling technique is employed in this paper to predict the groove wander of longitudinal tread grooved tires. In generally, groove wander is the lateral force acting on a vehicle’s wheel resulting from the combination of rain grooves. If the lateral force of tire is generated by groove wander, unexpected lateral motion of vehicle will happen and it makes drivers uncomfortable. This paper describes the effect of groove wander according to the shape condition of tire tread groove and highway groove using the finite element analysis based on a static loading or a steady-state rolling assumption. The road groove can be located anywhere relative to the longitudinal tread groove. Therefore, the lateral force of the tire is changing depending on the location of the groove road. The numerical results for groove wander prediction of the longitudinal tread grooved tires are compared with the subjective evaluation. It is found that the waveform for the tire with varying grooved road position has a peak-to-peak lateral force in order to estimate the rating of groove wander. The effect of the road groove width and the pitch length on the peak-to-peak lateral force of tire is discussed. It is found that the prediction of FEA-based groove wander model using finite element analysis will be useful for the reliability design of the tire tread pattern design.
基金Supported by National Natural Science Foundation of China(Grant No.51605417)Key Project of Hebei Provincial Natural Science Foundation,China(Grant No.E2016203264)State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)Open Fund Project(Grant No.GZKF-201502)
文摘Nowadays, a highly integrated valve?controlled cylinder(HIVC) is applied to drive the joints of legged robots. Although the adoption of HIVC has resulted in high?performance robot control, the hydraulic force system still has problems, such as strong nonlinearity, and time?varying parameters. This makes HIVC force control very diffcult and complex. How to improve the control performance of the HIVC force control system and find the influence rule of the system parameters on the control performance is very significant. Firstly, the mathematical model of HIVC force control system is established. Then the mathematical expression for parameter sensitivity matrix is obtained by applying matrix sensitivity analysis(PSM). Then, aimed at the sinusoidal response under(three factors and three levels) working conditions, the simulation and the experiment are conducted. While the error between the simulation and experiment can’t be avoided. Therefore, combined with the range analysis, the error in the two performance indexes of sinusoidal response under the whole working condition is analyzed. Besides, the sensitivity variation pattern for each system parameter under the whole working condition is figured out. Then the two sensitivity indexes for the three system parameters, which are supply pressure, proportional gain and initial displacement of piston, are proved experimentally. The proposed method significantly reveals the sensitivity characteristics of HIVC force control system, which can make the contribution to improve the control performance.
文摘This paper presents a comparison of the seismic forces generated from a Modal Response Spectrum Analysis (MRSA) by applying the provisions of two building codes, the 1997 Uniform Building Code (UBC) and the 2000-2009 International Building Code (IBC), to the most common ordinary residential buildings of standard occupancy. Considering IBC as the state of the art benchmark code, the primary concern is the safety of buildings designed using the UBC as compared to those designed using the IBC. A sample of four buildings with different layouts and heights was used for this comparison. Each of these buildings was assumed to be located at four different geographical sample locations arbitrarily selected to represent various earthquake zones on a seismic map of the USA, and was subjected to code-compliant response spectrum analyses for all sample locations and for five different soil types at each location. Response spectrum analysis was performed using the ETABS software package. For all the cases investigated, the UBC was found to be significantly more conservative than the IBC. The UBC design response spectra have higher spectral accelerations, and as a result, the response spectrum analysis provided a much higher base shear and moment in the structural members as compared to the IBC. The conclusion is that ordinary office and residential buildings designed using UBC 1997 are considered to be overdesigned, and therefore they are quite safe even according to the IBC provisions.
文摘Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.
文摘The precise hydraulic valve is widely used in various industrial fields like aircraft, automobile and general machinery. Linear actuator is the most important device for driving the precise hydraulic valve. The reliable operation of linear actuator has effects on the overall hydraulic system. The performance of linear actuator relies on frequency response and step response according to arbitrary input signal. In this paper, the analysis for the components of linear actuator is performed to satisfy the reliable operation and response characteristics through the reliability analysis, and also deducted the design equations to realize the reliable operation and fast response characteristics of voice coil type linear actuator for servo valve operation through the empirical knowledge of experts and electromagnetic theories. The design equations are suggested to determine the values of design parameters of linear actuator as like bobbin size, length of yoke and plunger and turn number of coil, and calculated the life test time of linear actuator for verification of reliability of the prototype. In addition, for reducing the life test time, the acceleration model of linear actuator is proposed and the acceleration factor is calculated considering the field operating conditions. And then, the achieved design values are verified through accelerated life test and performance tests using some prototypes of linear actuators adapted in servo valve.
文摘The UHVAC 1 000-kV transmission system is so far the one with the most advanced transmission technique applied and highest operation voltage.There are no guidelines or standards available for the design of 1 000-kV overhead transmission line in China.Study on key technologies and design schemes shall be carried out to ascertain the technical principles and construction standards for project construction,which are presented in this paper based on the Southeast Shanxi-Nanyang-Jingmen test and demonstration transmission line.A comparison and analysis of technical data and economic indices between UHV line and other lines are also described.
基金supported by the U.S.National Science Foundation(CNS-1513031,CBET-1706130)the National Natural Science Foundation of China(91852205,91741101&11961131006)+1 种基金the National Numerical Wind Tunnel program,Guangdong Provincial Key Laboratory of Turbulence Research and Applications(2019B21203001)Shenzhen Science&Technology Program(Grant No.KQTD20180411143441009).
文摘In this paper,based on simplified Boltzmann equation,we explore the inverse-design of mesoscopic models for compressible flow using the Chapman-Enskog analysis.Starting from the single-relaxation-time Boltzmann equation with an additional source term,two model Boltzmann equations for two reduced distribution functions are obtained,each then also having an additional undetermined source term.Under this general framework and using Navier-Stokes-Fourier(NSF)equations as constraints,the structures of the distribution functions are obtained by the leading-order Chapman-Enskog analysis.Next,five basic constraints for the design of the two source terms are obtained in order to recover the NSF system in the continuum limit.These constraints allow for adjustable bulk-to-shear viscosity ratio,Prandtl number as well as a thermal energy source.The specific forms of the two source terms can be determined through proper physical considerations and numerical implementation requirements.By employing the truncated Hermite expansion,one design for the two source terms is proposed.Moreover,three well-known mesoscopic models in the literature are shown to be compatible with these five constraints.In addition,the consistent implementation of boundary conditions is also explored by using the Chapman-Enskog expansion at the NSF order.Finally,based on the higher-order Chapman-Enskog expansion of the distribution functions,we derive the complete analytical expressions for the viscous stress tensor and the heat flux.Some underlying physics can be further explored using the DNS simulation data based on the proposed model.