Industrially produced sodium water glasses were dried in climates with controlled temperature and humidity to transparent amorphous water containing sodium silicate materials. The water glasses had molar SiO2:Na2O rat...Industrially produced sodium water glasses were dried in climates with controlled temperature and humidity to transparent amorphous water containing sodium silicate materials. The water glasses had molar SiO2:Na2O ratios of 2.2, 3.3 and 3.9 and were dried up to 84 days at temperatures between 40°C and 95°C and water vapour pressures between 5 and 40 kPa. The materials approached final water concentrations which are equilibrium values and are controlled by the water vapour pressure of the atmosphere and the microstructure of the solids. The microstructure of the dried water glasses was characterized by atomic force microscopy. It has a nanosized substructure built up by the silicate colloids of the educts but deformed by capillary forces. In the final drying equilibrium, the water vapour pressure of the atmosphere in the drying cabinet is equal to the reduced vapour pressure of the capillary system built up by the silicate colloids. Their size scale can be explained by the deformation of colloidal aggregates due to capillary forces.展开更多
Drying is a basic link in seafood processing, and the effects of forced air drying and vacuum drying on the effective components of Stichopus japonicus viscera were compared with the moisture, total saponin and polysa...Drying is a basic link in seafood processing, and the effects of forced air drying and vacuum drying on the effective components of Stichopus japonicus viscera were compared with the moisture, total saponin and polysaccharide contents as the detection indexes. The contents of effective components obtained using forced air drying were slightly lower than those obtained using vacuum drying, but the forced air drying method used short drying time and low economic energy consumption. Excellent drying effects and low cost of forced air drying made it can be adapted to the requirements of large-scale production applications.展开更多
The maximum normal impact resultant force(NIRF)is usually regarded as the sum of the static earth pressure of the dead zone and the dynamic impact pressure of the flowing layer.The influence of the interaction between...The maximum normal impact resultant force(NIRF)is usually regarded as the sum of the static earth pressure of the dead zone and the dynamic impact pressure of the flowing layer.The influence of the interaction between the flowing layer and dead zone on the impact force is ignored.In this study,we classified two impact models with respect to the pileup characteristics of the dead zone.Then,we employed the discrete element method to investigate the influences of the pileup characteristics on the impact force of dry granular flow on a tilted rigid wall.If the final pileup height is equal to the critical value,the maximum NIRF can be estimated using a hydrostatic model,because the main contribution to the maximum NIRF is the static earth pressure of the dead zone.If the final pileup height is less than the critical value,however,the particles in the dead zone are squeezed along the slope surface by the impact ofthe flowing layer on the dead zone,and because of shear effects,the flowing layer causes an entrainment in the dead zone.This results in a decrease in the volume of the dead zone at the moment of maximum NIRF with increases in the slope angle.As such,the maximum NIRF mainly comprises the instant impact force of the flowing layer,so hydro-dynamic models are effective for estimating the maximum NIRF.Impact models will benefit from further study of the components and distribution of the impact force of dry granular flow.展开更多
In the design of rock sheds for the mitigation of risk due to rapid and long landslides, a crucial role is played by the evaluation of the impact force exerted by the flowing mass on the rock sheds. This paper is focu...In the design of rock sheds for the mitigation of risk due to rapid and long landslides, a crucial role is played by the evaluation of the impact force exerted by the flowing mass on the rock sheds. This paper is focused on the influencing factors of the impact force of dry granular flow onto rock shed and in particular on the evaluation of the maximum impact force. The coupled DEM-FEM model calibrated with small-scale physical experiment is used to simulate the movement of dry granular flow coupled with impact forces on the rock-shed. Based on the numerical results, three key stages were identified of impact process, namely startup streams slippery, impact and pile-up. The maximum impact force increases linearly with bulk density, and the maximum impact force exhibits a power law dependence on the impact height and slop angle respectively. The sensitivities of bulk density, impact height, and slope angle on the maximum impact force are: 1.0, 0.496, and 2.32 respectively in the benchmark model. The parameters with high sensitivity should be given priority in the design of the rock shed. The results obtained from this study are useful for facilitating design of shed against dry granular flow.展开更多
Wall deposition occurs in spray dryers when dried or partially dried particles contact and adhere to the walls during operation, thus reducing the yield of product collected. Wall deposits also present a product conta...Wall deposition occurs in spray dryers when dried or partially dried particles contact and adhere to the walls during operation, thus reducing the yield of product collected. Wall deposits also present a product contamination risk and a fire or explosion risk when spray drying products that oxidize exothermically, such as milk powder. Re-entrainment is the resuspension of spray dryer wall deposits into the main gas stream for collection as product. Literature suggests that the process for re-entrainment of particles from spray dryer wall deposits is strongly dependent on particle size and gas velocity.展开更多
Aerosol optical properties and direct radiative effects on surface irradiance were examined using seven years (2006-2012) of Cimel sunphotometer data collected at Panyu--the main atmospheric composition monitoring s...Aerosol optical properties and direct radiative effects on surface irradiance were examined using seven years (2006-2012) of Cimel sunphotometer data collected at Panyu--the main atmospheric composition monitoring station in the Pearl River Delta (PRD) region of China. During the dry season (October to February), mean values of the aerosol optical depth (AOD) at 550 nm, the Angstrom exponent, and the single scattering albedo at 440 nm (SSA) were 0.54, 1.33 and 0.87, respectively. About 90% of aerosols were dominated by fine-mode strongly absorbing particles. The size distribution was bimodal, with fine-mode particles dominating. The fine mode showed a peak at a radius of 0.12 μm in February and October (- 0.10 μm3 μm-2). The mean diurnal shortwave direct radiative forcing at the surface, inside the atmosphere (FATM), and at the top of the atmosphere, was -33.4± 7.0, 26.1 ± 5.6 and -7.3 ±2.7 W m-2, respectively. The corresponding mean values of aerosol direct shortwave radiative forcing per AOD were -60.0 ±7.8, 47.3 ± 8.3 and -12.8 ±3.1 W m-2, respectively. Moreover, during the study period, FATM showed a significant decreasing trend (p 〈 0.01) and SSA increased from 0.87 in 2006 to 0.91 in 2012, suggesting a decreasing trend of absorbing particles being released into the atmosphere. Optical properties and radiative impacts of the absorbing particles can be used to improve the accuracy of inversion algorithms for satellite-based aerosol retrievals in the PRD region and to better constrain the climate effect of aerosols in climate models.展开更多
Based on the analysis of the piano wire’s vibration characteristics, the authors estab lished the mechanical model of piano wire proba bility screen , obtained the analytic so lution of thestable forced vibration...Based on the analysis of the piano wire’s vibration characteristics, the authors estab lished the mechanical model of piano wire proba bility screen , obtained the analytic so lution of thestable forced vibration of screen wires , and developed the para meter designfor m ula of the piano wire screen . The para meter design form ula has been used in coalpreparation industry .展开更多
An efficient multi-harmonic method is proposed for studying the effects of mistuning on resonant features of bladed disks with blade-to-blade dry friction damping. This method is able to predict accurately the forced ...An efficient multi-harmonic method is proposed for studying the effects of mistuning on resonant features of bladed disks with blade-to-blade dry friction damping. This method is able to predict accurately the forced response of bladed disks in frequency domain, which is validated by numerical integration method in time domain. The resonant features of both tuned and mistuned systems are investigated by using this method under various system coupling strengths, viscous dampings, and dry friction darnpings, etc. The results demonstrate that the proposed multi-harmonic method is very efficient for studying the mistuning effects on the resonant response of bladed disks with blade-to-blade dry friction damping, especially considering the combined effects of various system parameters.展开更多
The article proposes to use the Euler equations to describe the motion of a stationary stream in the cleaning zones, which allows us to determine the laws of the distribution of pressure, density and speed along the a...The article proposes to use the Euler equations to describe the motion of a stationary stream in the cleaning zones, which allows us to determine the laws of the distribution of pressure, density and speed along the arc of contact of the moving layer of raw cotton with the surface of the mesh during impact with spikes on the pulp. It was found that the pressure, density and flow velocity along the cleaning arc as a result of the hammer spikes change stepwise with decreasing pressure and density and increasing flow velocity along this arc.展开更多
The application of cutting fluids in machining brings out many benefits, but their use is accompanied by health and enviroment hazards. MQL (Minimum Quantity Lubricant) has become a preciously alternative solution f...The application of cutting fluids in machining brings out many benefits, but their use is accompanied by health and enviroment hazards. MQL (Minimum Quantity Lubricant) has become a preciously alternative solution for lubrication against dry machinning and flood cooling lubricant, and this is a step toward green machining. This paper presents a comprehensively experiemental study on investigation of MQL performance in hard milling of S60C steel for multiple responses, including surface quality, cutting forces and tool wear. Compared to dry milling, even-enhanced surfaces finish quality, 20% less cutting force (Ft) and almost 112% prolonged tool lifetime are achieved by using MQL with 5% Emulsion in hard milling. In addition, this study compared the performances of MQL milling by using 5% Emulsion to the peanut oil completely harmless to the enviroment. This encouraging result, therefore, reveals that the MQL-employed hard milling can enable significant improvement in productivity, product quality, and overall machining economy even after covering the additional cost of designing and implementing MQL system. Moreover, this study also shows the limitation of peanut oils employed in MQL and proposes the further research in novel additives to enhance the performance of cooling lubricant for vegetable oils.展开更多
Roller Compacted Concrete (RCC) has gained favorable recognition in hydropower and water resource dam construction. With optimization in construction technology and materials used for RCC Dams, cost is no longer a maj...Roller Compacted Concrete (RCC) has gained favorable recognition in hydropower and water resource dam construction. With optimization in construction technology and materials used for RCC Dams, cost is no longer a major disadvantage as compared to environmental impact, that is, wildlife habitat disruption. In as much as it has become optimal for investment in hydropower dam construction, the scourge for dam failure is still eminent, which is as a result of excessive seepage compromising the integrity of the mechanical properties of the dam. The aim of the paper is to highlight successful application methods in joint bonding to avoid excessive seepage and reduce the autogenous healing to a few years of operation. In view of optimization, this paper presents a comprehensive study on the influences of interlayer joints bonding quality from RCC mix performances and how it consolidates the RCC layers to withstand the shear strength along the interface, especially on the high dams. The case study is the RCC dam at the 750 MW Kafue Gorge Lower Hydropower Station. The scope of the study reviews the joint type judged by Modified Maturity Factor (MMF) with joint surface long time exposed in regions with dry and high temperature, technical measures of layer bonding quality control under condition of long time joint surface exposure, effects of joints shear strength and impermeability of the RCC layers when under the conditions of plastic and elasticity. The subtle observations made during the dam construction phases were with respect to the optimal use of materials in relation to RCC mix designs and the basis for equipment calibration for monitoring important data that can be referenced during analysis of shear forces acting on the RCC dam over time.展开更多
In order to fight for good farming time or harvest in bad weather,combine harvester will produce more broken leaves when threshing high moisture content rice,which will seriously hinder the grain cleaning effect.In th...In order to fight for good farming time or harvest in bad weather,combine harvester will produce more broken leaves when threshing high moisture content rice,which will seriously hinder the grain cleaning effect.In this study,the breaking behavior of rice leaves under different microwave drying time and drying power was studied.Firstly,based on the appearance of freshly rice leaves undergoing microwave drying,the changing property of moisture content,weightlessness rate and temperature rise of rice leaves were tested and analyzed.Secondly,the tensile breaking force of freshly rice leaves under different microwave drying time and drying power was tested and compared with the tensile breaking force of naturally dried rice.Finally,the optimal microwaves parameters of rice leaves after drying which could result in greater breaking force than the natural drying state were obtained.The result showed that microwave drying method will reduce the moisture content of rice leaves and change the microstructure,which would affect the tensile-breaking property of rice leaves.The maximum tensile breaking force of rice leaves appeared at microwave dried power 70 W for 5-8 min and at microwave dried power 210 W for 3-4 min.The tensile breaking property of rice leaves at microwave dried power 350 W for 6-8 min were the weakest,which was lower than that of fresh rice leaves.Therefore,the optimal microwave drying parameters of rice leaves will provide a basis for the application of microwave technology in the threshing process.展开更多
Aerosol nonsphericity causes great uncertainty in radiative forcing assessments and climate simulations.Although considerable studies have attempted to quantify this uncertainty,the relationship between aerosol nonsph...Aerosol nonsphericity causes great uncertainty in radiative forcing assessments and climate simulations.Although considerable studies have attempted to quantify this uncertainty,the relationship between aerosol nonsphericity and particle size is usually not considered,thus reducing the accuracy of the results.In this study,a coupled inversion algorithm combining an improved stochastic particle swarm optimization algorithm and angular light scattering is used for the nonparametric estimation of aerosol nonsphericity variation with particle size,and the optimal sample selection method is employed to screen the data.Based on the verification of inversion accuracy,the variation of aerosol aspect ratio with particle size based on the ellipsoidal model in global regions has been obtained from Aerosol Robotic Network(AERONET)data,and the effect of nonsphericity on radiative forcing and dry deposition has been studied.The results show that the aspect ratio increases with particle size in all regions,with the maximum ranging from 1.4 to 1.8 in the desert,reflecting the differences in aerosol composition at different particle sizes.In radiation calculations,considering aerosol nonsphericity makes the aerosol cooling effect weaker and surface radiative fluxes increase,but hardly changes the aerosol absorption,with maximum differences of 9.22%and 22.12%at the bottom and top of the atmosphere,respectively.Meanwhile,the differences in radiative forcing between aspect ratios as a function of particle size and not varying with particle size are not significant,averaging less than 2%.Besides,the aspect ratio not varying with particle size underestimates the deposition velocity of small particles and overestimates that of large particles compared to that as a function of particle size,with maximum differences of 7%and 4%,respectively.展开更多
The extraordinarily high temperatures experienced during the summer of 2022 on the Tibetan Plateau(TP)demand attention when compared with its typical climatic conditions.The absence of precipitation alongside the elev...The extraordinarily high temperatures experienced during the summer of 2022 on the Tibetan Plateau(TP)demand attention when compared with its typical climatic conditions.The absence of precipitation alongside the elevated temperatures resulted in 2022 being the hottest and driest summer on record on the TP since at least 1961.Recognizing the susceptibility of the TP to climate change,this study employed large-ensemble simulations from the HadGEM3-A-N216 attribution system,together with a copula-based joint probability distribution,to investigate the influence of anthropogenic forcing,primarily global greenhouse gas emissions,on this unprecedented compound hot and dry event(CHDE).Findings revealed that the return period for the 2022 CHDE on the TP exceeds 4000 years,as determined from the fitted joint distributions derived using observational data spanning 1961-2022.This CHDE was directly linked to large-scale circulation anomalies,including the control of equivalent-barotropic high-pressure anomalies and the northward displacement of the subtropical westerly jet stream.Moreover,anthropogenic forcing has,to some extent,promoted the surface warming and increased variability in precipitation on the TP in summer,establishing conditions conducive for the 2022 CHDE from a long-term climate change perspective.The return period for a 2022-like CHDE on the TP was estimated to be approximately 283 years(142-613 years)by the large ensemble forced by both anthropogenic activities and natural factors.Contrastingly,ensemble simulations driven solely by natural forcing indicated that the likelihood of occurrence of a 2022-like CHDE was almost negligible.These outcomes underscore that the contribution of anthropogenic forcing to the probability of a 2022-like CHDE was 100%,implying that without anthropogenically induced global warming,a comparable CHDE akin to that observed in 2022 on the TP would not be possible.展开更多
The phenomenon of particle interaction involved in pulmonary drug delivery belongs to a wide variety of disciplines of particle technology, in particular, fluidization. This paper reviews the basic concepts of pulmona...The phenomenon of particle interaction involved in pulmonary drug delivery belongs to a wide variety of disciplines of particle technology, in particular, fluidization. This paper reviews the basic concepts of pulmonary drug delivery with references to fluidization research, in particular, studies on Geldart group C powders. Dry powder inhaler device-formulation combination has been shown to be an effective method for delivering drugs to the lung for treatment of asthma, chronic obstructive pulmonary disease and cystic fibrosis. Even with advanced designs, however, delivery efficiency is still poor mainly due to powder dispersion problems which cause poor lung deposition and high dose variability. Drug particles used in current inhalers must be 1–5 μm in diameter for effective deposition in small-diameter airways and alveoli. These powders are very cohesive, have poor flowability, and are difficult to disperse into aerosol due to cohesion arising from van der Waals attraction. These problems are well known in fluidization research, much of which is highly relevant to pulmonary drug delivery.展开更多
文摘Industrially produced sodium water glasses were dried in climates with controlled temperature and humidity to transparent amorphous water containing sodium silicate materials. The water glasses had molar SiO2:Na2O ratios of 2.2, 3.3 and 3.9 and were dried up to 84 days at temperatures between 40°C and 95°C and water vapour pressures between 5 and 40 kPa. The materials approached final water concentrations which are equilibrium values and are controlled by the water vapour pressure of the atmosphere and the microstructure of the solids. The microstructure of the dried water glasses was characterized by atomic force microscopy. It has a nanosized substructure built up by the silicate colloids of the educts but deformed by capillary forces. In the final drying equilibrium, the water vapour pressure of the atmosphere in the drying cabinet is equal to the reduced vapour pressure of the capillary system built up by the silicate colloids. Their size scale can be explained by the deformation of colloidal aggregates due to capillary forces.
文摘Drying is a basic link in seafood processing, and the effects of forced air drying and vacuum drying on the effective components of Stichopus japonicus viscera were compared with the moisture, total saponin and polysaccharide contents as the detection indexes. The contents of effective components obtained using forced air drying were slightly lower than those obtained using vacuum drying, but the forced air drying method used short drying time and low economic energy consumption. Excellent drying effects and low cost of forced air drying made it can be adapted to the requirements of large-scale production applications.
文摘The maximum normal impact resultant force(NIRF)is usually regarded as the sum of the static earth pressure of the dead zone and the dynamic impact pressure of the flowing layer.The influence of the interaction between the flowing layer and dead zone on the impact force is ignored.In this study,we classified two impact models with respect to the pileup characteristics of the dead zone.Then,we employed the discrete element method to investigate the influences of the pileup characteristics on the impact force of dry granular flow on a tilted rigid wall.If the final pileup height is equal to the critical value,the maximum NIRF can be estimated using a hydrostatic model,because the main contribution to the maximum NIRF is the static earth pressure of the dead zone.If the final pileup height is less than the critical value,however,the particles in the dead zone are squeezed along the slope surface by the impact ofthe flowing layer on the dead zone,and because of shear effects,the flowing layer causes an entrainment in the dead zone.This results in a decrease in the volume of the dead zone at the moment of maximum NIRF with increases in the slope angle.As such,the maximum NIRF mainly comprises the instant impact force of the flowing layer,so hydro-dynamic models are effective for estimating the maximum NIRF.Impact models will benefit from further study of the components and distribution of the impact force of dry granular flow.
文摘In the design of rock sheds for the mitigation of risk due to rapid and long landslides, a crucial role is played by the evaluation of the impact force exerted by the flowing mass on the rock sheds. This paper is focused on the influencing factors of the impact force of dry granular flow onto rock shed and in particular on the evaluation of the maximum impact force. The coupled DEM-FEM model calibrated with small-scale physical experiment is used to simulate the movement of dry granular flow coupled with impact forces on the rock-shed. Based on the numerical results, three key stages were identified of impact process, namely startup streams slippery, impact and pile-up. The maximum impact force increases linearly with bulk density, and the maximum impact force exhibits a power law dependence on the impact height and slop angle respectively. The sensitivities of bulk density, impact height, and slope angle on the maximum impact force are: 1.0, 0.496, and 2.32 respectively in the benchmark model. The parameters with high sensitivity should be given priority in the design of the rock shed. The results obtained from this study are useful for facilitating design of shed against dry granular flow.
文摘Wall deposition occurs in spray dryers when dried or partially dried particles contact and adhere to the walls during operation, thus reducing the yield of product collected. Wall deposits also present a product contamination risk and a fire or explosion risk when spray drying products that oxidize exothermically, such as milk powder. Re-entrainment is the resuspension of spray dryer wall deposits into the main gas stream for collection as product. Literature suggests that the process for re-entrainment of particles from spray dryer wall deposits is strongly dependent on particle size and gas velocity.
基金funded by the National Natural Science Foundation of China (Grant Nos. 41475105, 41475138,41405133 and 41605105)the National Key Project of MOST (Grant No. 2016YFC0202003, 2016YFC0203305, 2016YFC0201901)+2 种基金the Guangdong Province Science and Technology Plan (Grant No. 2015A020215020)the Science and Technology Innovative Research Team Plan of Guangdong Meteorological Bureau (Grant No. 201506)the Science and Technology Research Project of Guangdong Meteorological Bureau (Grant No. 2015B06)
文摘Aerosol optical properties and direct radiative effects on surface irradiance were examined using seven years (2006-2012) of Cimel sunphotometer data collected at Panyu--the main atmospheric composition monitoring station in the Pearl River Delta (PRD) region of China. During the dry season (October to February), mean values of the aerosol optical depth (AOD) at 550 nm, the Angstrom exponent, and the single scattering albedo at 440 nm (SSA) were 0.54, 1.33 and 0.87, respectively. About 90% of aerosols were dominated by fine-mode strongly absorbing particles. The size distribution was bimodal, with fine-mode particles dominating. The fine mode showed a peak at a radius of 0.12 μm in February and October (- 0.10 μm3 μm-2). The mean diurnal shortwave direct radiative forcing at the surface, inside the atmosphere (FATM), and at the top of the atmosphere, was -33.4± 7.0, 26.1 ± 5.6 and -7.3 ±2.7 W m-2, respectively. The corresponding mean values of aerosol direct shortwave radiative forcing per AOD were -60.0 ±7.8, 47.3 ± 8.3 and -12.8 ±3.1 W m-2, respectively. Moreover, during the study period, FATM showed a significant decreasing trend (p 〈 0.01) and SSA increased from 0.87 in 2006 to 0.91 in 2012, suggesting a decreasing trend of absorbing particles being released into the atmosphere. Optical properties and radiative impacts of the absorbing particles can be used to improve the accuracy of inversion algorithms for satellite-based aerosol retrievals in the PRD region and to better constrain the climate effect of aerosols in climate models.
文摘Based on the analysis of the piano wire’s vibration characteristics, the authors estab lished the mechanical model of piano wire proba bility screen , obtained the analytic so lution of thestable forced vibration of screen wires , and developed the para meter designfor m ula of the piano wire screen . The para meter design form ula has been used in coalpreparation industry .
基金National Nature Science Foundation of China (NO.50275121)
文摘An efficient multi-harmonic method is proposed for studying the effects of mistuning on resonant features of bladed disks with blade-to-blade dry friction damping. This method is able to predict accurately the forced response of bladed disks in frequency domain, which is validated by numerical integration method in time domain. The resonant features of both tuned and mistuned systems are investigated by using this method under various system coupling strengths, viscous dampings, and dry friction darnpings, etc. The results demonstrate that the proposed multi-harmonic method is very efficient for studying the mistuning effects on the resonant response of bladed disks with blade-to-blade dry friction damping, especially considering the combined effects of various system parameters.
文摘The article proposes to use the Euler equations to describe the motion of a stationary stream in the cleaning zones, which allows us to determine the laws of the distribution of pressure, density and speed along the arc of contact of the moving layer of raw cotton with the surface of the mesh during impact with spikes on the pulp. It was found that the pressure, density and flow velocity along the cleaning arc as a result of the hammer spikes change stepwise with decreasing pressure and density and increasing flow velocity along this arc.
文摘The application of cutting fluids in machining brings out many benefits, but their use is accompanied by health and enviroment hazards. MQL (Minimum Quantity Lubricant) has become a preciously alternative solution for lubrication against dry machinning and flood cooling lubricant, and this is a step toward green machining. This paper presents a comprehensively experiemental study on investigation of MQL performance in hard milling of S60C steel for multiple responses, including surface quality, cutting forces and tool wear. Compared to dry milling, even-enhanced surfaces finish quality, 20% less cutting force (Ft) and almost 112% prolonged tool lifetime are achieved by using MQL with 5% Emulsion in hard milling. In addition, this study compared the performances of MQL milling by using 5% Emulsion to the peanut oil completely harmless to the enviroment. This encouraging result, therefore, reveals that the MQL-employed hard milling can enable significant improvement in productivity, product quality, and overall machining economy even after covering the additional cost of designing and implementing MQL system. Moreover, this study also shows the limitation of peanut oils employed in MQL and proposes the further research in novel additives to enhance the performance of cooling lubricant for vegetable oils.
文摘Roller Compacted Concrete (RCC) has gained favorable recognition in hydropower and water resource dam construction. With optimization in construction technology and materials used for RCC Dams, cost is no longer a major disadvantage as compared to environmental impact, that is, wildlife habitat disruption. In as much as it has become optimal for investment in hydropower dam construction, the scourge for dam failure is still eminent, which is as a result of excessive seepage compromising the integrity of the mechanical properties of the dam. The aim of the paper is to highlight successful application methods in joint bonding to avoid excessive seepage and reduce the autogenous healing to a few years of operation. In view of optimization, this paper presents a comprehensive study on the influences of interlayer joints bonding quality from RCC mix performances and how it consolidates the RCC layers to withstand the shear strength along the interface, especially on the high dams. The case study is the RCC dam at the 750 MW Kafue Gorge Lower Hydropower Station. The scope of the study reviews the joint type judged by Modified Maturity Factor (MMF) with joint surface long time exposed in regions with dry and high temperature, technical measures of layer bonding quality control under condition of long time joint surface exposure, effects of joints shear strength and impermeability of the RCC layers when under the conditions of plastic and elasticity. The subtle observations made during the dam construction phases were with respect to the optimal use of materials in relation to RCC mix designs and the basis for equipment calibration for monitoring important data that can be referenced during analysis of shear forces acting on the RCC dam over time.
基金the National Natural Science Foundation of China(Grant No.52175235)Jiangsu Province“Six Talents Peak”High-level Talent Project(GDZB-085)+2 种基金Single Technology Research and Development Project of Jiangsu Agricultural Science and Technology Innovation Fund(CX(21)3144)Open Fund of Jiangsu Key Laboratory of Agricultural Equipment and Intelligent High Technology(JNZ201912)Jiangsu Province Research and Practice Innovation Program Project(KYCX21_3382).
文摘In order to fight for good farming time or harvest in bad weather,combine harvester will produce more broken leaves when threshing high moisture content rice,which will seriously hinder the grain cleaning effect.In this study,the breaking behavior of rice leaves under different microwave drying time and drying power was studied.Firstly,based on the appearance of freshly rice leaves undergoing microwave drying,the changing property of moisture content,weightlessness rate and temperature rise of rice leaves were tested and analyzed.Secondly,the tensile breaking force of freshly rice leaves under different microwave drying time and drying power was tested and compared with the tensile breaking force of naturally dried rice.Finally,the optimal microwaves parameters of rice leaves after drying which could result in greater breaking force than the natural drying state were obtained.The result showed that microwave drying method will reduce the moisture content of rice leaves and change the microstructure,which would affect the tensile-breaking property of rice leaves.The maximum tensile breaking force of rice leaves appeared at microwave dried power 70 W for 5-8 min and at microwave dried power 210 W for 3-4 min.The tensile breaking property of rice leaves at microwave dried power 350 W for 6-8 min were the weakest,which was lower than that of fresh rice leaves.Therefore,the optimal microwave drying parameters of rice leaves will provide a basis for the application of microwave technology in the threshing process.
基金the National Natural Science Foundation of China(grant No.52376072)。
文摘Aerosol nonsphericity causes great uncertainty in radiative forcing assessments and climate simulations.Although considerable studies have attempted to quantify this uncertainty,the relationship between aerosol nonsphericity and particle size is usually not considered,thus reducing the accuracy of the results.In this study,a coupled inversion algorithm combining an improved stochastic particle swarm optimization algorithm and angular light scattering is used for the nonparametric estimation of aerosol nonsphericity variation with particle size,and the optimal sample selection method is employed to screen the data.Based on the verification of inversion accuracy,the variation of aerosol aspect ratio with particle size based on the ellipsoidal model in global regions has been obtained from Aerosol Robotic Network(AERONET)data,and the effect of nonsphericity on radiative forcing and dry deposition has been studied.The results show that the aspect ratio increases with particle size in all regions,with the maximum ranging from 1.4 to 1.8 in the desert,reflecting the differences in aerosol composition at different particle sizes.In radiation calculations,considering aerosol nonsphericity makes the aerosol cooling effect weaker and surface radiative fluxes increase,but hardly changes the aerosol absorption,with maximum differences of 9.22%and 22.12%at the bottom and top of the atmosphere,respectively.Meanwhile,the differences in radiative forcing between aspect ratios as a function of particle size and not varying with particle size are not significant,averaging less than 2%.Besides,the aspect ratio not varying with particle size underestimates the deposition velocity of small particles and overestimates that of large particles compared to that as a function of particle size,with maximum differences of 7%and 4%,respectively.
基金supported by the second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2022QZKK0101)。
文摘The extraordinarily high temperatures experienced during the summer of 2022 on the Tibetan Plateau(TP)demand attention when compared with its typical climatic conditions.The absence of precipitation alongside the elevated temperatures resulted in 2022 being the hottest and driest summer on record on the TP since at least 1961.Recognizing the susceptibility of the TP to climate change,this study employed large-ensemble simulations from the HadGEM3-A-N216 attribution system,together with a copula-based joint probability distribution,to investigate the influence of anthropogenic forcing,primarily global greenhouse gas emissions,on this unprecedented compound hot and dry event(CHDE).Findings revealed that the return period for the 2022 CHDE on the TP exceeds 4000 years,as determined from the fitted joint distributions derived using observational data spanning 1961-2022.This CHDE was directly linked to large-scale circulation anomalies,including the control of equivalent-barotropic high-pressure anomalies and the northward displacement of the subtropical westerly jet stream.Moreover,anthropogenic forcing has,to some extent,promoted the surface warming and increased variability in precipitation on the TP in summer,establishing conditions conducive for the 2022 CHDE from a long-term climate change perspective.The return period for a 2022-like CHDE on the TP was estimated to be approximately 283 years(142-613 years)by the large ensemble forced by both anthropogenic activities and natural factors.Contrastingly,ensemble simulations driven solely by natural forcing indicated that the likelihood of occurrence of a 2022-like CHDE was almost negligible.These outcomes underscore that the contribution of anthropogenic forcing to the probability of a 2022-like CHDE was 100%,implying that without anthropogenically induced global warming,a comparable CHDE akin to that observed in 2022 on the TP would not be possible.
文摘The phenomenon of particle interaction involved in pulmonary drug delivery belongs to a wide variety of disciplines of particle technology, in particular, fluidization. This paper reviews the basic concepts of pulmonary drug delivery with references to fluidization research, in particular, studies on Geldart group C powders. Dry powder inhaler device-formulation combination has been shown to be an effective method for delivering drugs to the lung for treatment of asthma, chronic obstructive pulmonary disease and cystic fibrosis. Even with advanced designs, however, delivery efficiency is still poor mainly due to powder dispersion problems which cause poor lung deposition and high dose variability. Drug particles used in current inhalers must be 1–5 μm in diameter for effective deposition in small-diameter airways and alveoli. These powders are very cohesive, have poor flowability, and are difficult to disperse into aerosol due to cohesion arising from van der Waals attraction. These problems are well known in fluidization research, much of which is highly relevant to pulmonary drug delivery.