The mathematical model of CO oxidation with three time scales on platinum group metals is investigated, in which order gaps between the time scales related to external perturbation and the rates associated with differ...The mathematical model of CO oxidation with three time scales on platinum group metals is investigated, in which order gaps between the time scales related to external perturbation and the rates associated with different chemical reaction steps exist. Forced bursters, such as point–point type forced bursting and point–cycle type forced bursting, are presented. The bifurcation mechanism of forced bursting is novel, and the phenomenon where two different kinds of spiking states coexist in point–cycle type forced bursting has not been reported in previous work. A double-parameter bifurcation set of the fast subsystem is explored to reveal the transition mechanisms of different forced bursters with parameter variation.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 20976075, 10972091, and 11002093)the College Graduate Student Scientific Research Innovation Foundation of Jiangsu Province, China (Grant No. CXLX12-0619)
文摘The mathematical model of CO oxidation with three time scales on platinum group metals is investigated, in which order gaps between the time scales related to external perturbation and the rates associated with different chemical reaction steps exist. Forced bursters, such as point–point type forced bursting and point–cycle type forced bursting, are presented. The bifurcation mechanism of forced bursting is novel, and the phenomenon where two different kinds of spiking states coexist in point–cycle type forced bursting has not been reported in previous work. A double-parameter bifurcation set of the fast subsystem is explored to reveal the transition mechanisms of different forced bursters with parameter variation.