We investigate the elastic field near the tip of an anticrack in a homogeneous decagonal quasicrystalline material subject to plane strain deformations. The phonon and phason stresses exhibit a square root singularity...We investigate the elastic field near the tip of an anticrack in a homogeneous decagonal quasicrystalline material subject to plane strain deformations. The phonon and phason stresses exhibit a square root singularity at the anticrack tip. Two realvalued phonon stress intensity factors and two real-valued phason stress intensity factors are introduced to scale four separate modes of deformation. We obtain four analytic functions which completely characterize the induced phonon and phason stresses as well as the displacement field. In particular, we derive a concise yet elegant representation of the anticrack contraction force.展开更多
Effects of Zn content (0, 0.5%, 1.5% and 4.5%) on the hot tearing characteristics of Mg?2%Y alloy were studied in aconstrained rod casting (CRC) apparatus attached with a load cell and data acquisition system. The exp...Effects of Zn content (0, 0.5%, 1.5% and 4.5%) on the hot tearing characteristics of Mg?2%Y alloy were studied in aconstrained rod casting (CRC) apparatus attached with a load cell and data acquisition system. The experimental results indicate thatthe hot tearing susceptibility (HTS) is affected by the content of Zn. The Zn-free base alloy shows the lowest HTS. The HTS ofMg?xZn?2Y alloys increases with increasing Zn content, reaches the maximum at 1.5% Zn, and then decreases with further Znaddition. The high HTS observed in the alloy with 1.5% Zn is attributed to its high force release rate and large force drop duringsolidification. The hot cracks of casting are initiated and propagate along the dendritic or grain boundaries. The predictions of HTS ofMg?xZn?2Y alloys using ProCAST software are in good agreement with the results obtained by experimental measurements.展开更多
With an elastic negative pole being driven by ultra so nic vibration and being moved along the surface of work-piece compliantly by ro bot, a new kind of effective EDM, the compliant EDM, cuts the electrically condu c...With an elastic negative pole being driven by ultra so nic vibration and being moved along the surface of work-piece compliantly by ro bot, a new kind of effective EDM, the compliant EDM, cuts the electrically condu ctive materials away and polishes work-piece of free-form surface. The study o f the contact force between the end of polishing tool and the surface of work-p iece is the key for the compliant EDM to study its cutting mechanism and to make better use of it. This paper makes a model for the contact force and verifies i t by experiments and simulation based on the theory of elastic body kinetics and dynamic stress concentration. The research work shows that this contact force i s caused by both the electrical impulsion of EDM and the mechanical force of ult rasonic vibration, the discharge frequency of compliant EDM has a much more clos er connection with the vibration frequency of polishing tool rather than the fre quency of ultrasonic vibration.展开更多
基金the National Natural Science Foundation of China(No.11272121)the Natural Sciences and Engineering Research Council of Canada(No.RGPIN-2017-03716115112)。
文摘We investigate the elastic field near the tip of an anticrack in a homogeneous decagonal quasicrystalline material subject to plane strain deformations. The phonon and phason stresses exhibit a square root singularity at the anticrack tip. Two realvalued phonon stress intensity factors and two real-valued phason stress intensity factors are introduced to scale four separate modes of deformation. We obtain four analytic functions which completely characterize the induced phonon and phason stresses as well as the displacement field. In particular, we derive a concise yet elegant representation of the anticrack contraction force.
基金Financial supports from China Scholarship Council and Helmholtz Association of German Research Centers scholarship(No.2010821213) for Wang’s Ph D study in Helmholtz-Zentrum Geesthacht(HZG) are gratefully acknowledged
文摘Effects of Zn content (0, 0.5%, 1.5% and 4.5%) on the hot tearing characteristics of Mg?2%Y alloy were studied in aconstrained rod casting (CRC) apparatus attached with a load cell and data acquisition system. The experimental results indicate thatthe hot tearing susceptibility (HTS) is affected by the content of Zn. The Zn-free base alloy shows the lowest HTS. The HTS ofMg?xZn?2Y alloys increases with increasing Zn content, reaches the maximum at 1.5% Zn, and then decreases with further Znaddition. The high HTS observed in the alloy with 1.5% Zn is attributed to its high force release rate and large force drop duringsolidification. The hot cracks of casting are initiated and propagate along the dendritic or grain boundaries. The predictions of HTS ofMg?xZn?2Y alloys using ProCAST software are in good agreement with the results obtained by experimental measurements.
文摘With an elastic negative pole being driven by ultra so nic vibration and being moved along the surface of work-piece compliantly by ro bot, a new kind of effective EDM, the compliant EDM, cuts the electrically condu ctive materials away and polishes work-piece of free-form surface. The study o f the contact force between the end of polishing tool and the surface of work-p iece is the key for the compliant EDM to study its cutting mechanism and to make better use of it. This paper makes a model for the contact force and verifies i t by experiments and simulation based on the theory of elastic body kinetics and dynamic stress concentration. The research work shows that this contact force i s caused by both the electrical impulsion of EDM and the mechanical force of ult rasonic vibration, the discharge frequency of compliant EDM has a much more clos er connection with the vibration frequency of polishing tool rather than the fre quency of ultrasonic vibration.