The effect of the cone spacing of a conieal structure on the ice force is studied by model experiments. The ice force reduction coefficient presented in this paper expresses the relationship between the ice force and ...The effect of the cone spacing of a conieal structure on the ice force is studied by model experiments. The ice force reduction coefficient presented in this paper expresses the relationship between the ice force and the arrangement of cones. The experiments prove that the mode of the ice failure before the boundary of upward-downward bending cone (UDBC) is crushing. A conclusion can also be drawn from the experiments that the ice force on the boundary of UDBC is by far less than that on a vertical pile with the same diameter. Moreover, the ice force frequencies on upright and inve-rted cones are obtained under the field condition of the platform JZ20-2, respectively. The results show that the alterna-tion of the ice force on UDBC can hardly induce resonance of platform JZ20-2.展开更多
The interrelationship between preload forces and natural frequencies of anchors was obtained from the structure of an anchor and its mechanical characteristics. We established a numerical model for the dynamic analysi...The interrelationship between preload forces and natural frequencies of anchors was obtained from the structure of an anchor and its mechanical characteristics. We established a numerical model for the dynamic analysis of a bolt support system taking into consideration the working surroundings of the anchor. The natural frequency distribution of the system under various preload forces of the anchor was analyzed with ANSYS. Our results show that each order of the system frequency varied with an increase in preload forces. A single order frequency decreased with an increase in the preload force. A preload force affected low-order frequencies more than high-order frequencies. We obtained a functional relationship by fitting preload forces and fundamental frequencies, which was in agreement with our theretical considerations. This study provides theoretical support for the detection of preload forces.展开更多
The vibration response formulas of the mechanical system under the affect of thevari-frequency exciting force are deduced. It is proved by the theoretical analysis and experimentalresults that the vibration response a...The vibration response formulas of the mechanical system under the affect of thevari-frequency exciting force are deduced. It is proved by the theoretical analysis and experimentalresults that the vibration response amplitude of the mechanical system under the affect of thevari-frequency exciting force is far smaller than that under the affect of the constant frequency exciting force on condition that the exciting force amplitudes are just the same;while the vari-fre-quency rate a increases to 5 Hz per second the vibration amplitude will decrease to 10% only as lowas that under the affect of the constant frequency exciting force. All these conclusions will be of significance for revealing the mechanism of suppressing chatter in van-speed cutting and analyzing theexperimental results of sine-wave scanning exciting test.展开更多
基金This Project is financially supported by the National Natural Science Foundation of China(Grant No.50179022)
文摘The effect of the cone spacing of a conieal structure on the ice force is studied by model experiments. The ice force reduction coefficient presented in this paper expresses the relationship between the ice force and the arrangement of cones. The experiments prove that the mode of the ice failure before the boundary of upward-downward bending cone (UDBC) is crushing. A conclusion can also be drawn from the experiments that the ice force on the boundary of UDBC is by far less than that on a vertical pile with the same diameter. Moreover, the ice force frequencies on upright and inve-rted cones are obtained under the field condition of the platform JZ20-2, respectively. The results show that the alterna-tion of the ice force on UDBC can hardly induce resonance of platform JZ20-2.
基金the financial support from the National Basic Research Program of China (No. 2013CB227900)the China Postdoctoral Science Foundation (No. 20110491483)the State Key Laboratory of Coal Resources and Mine Safety(No. 10F08)
文摘The interrelationship between preload forces and natural frequencies of anchors was obtained from the structure of an anchor and its mechanical characteristics. We established a numerical model for the dynamic analysis of a bolt support system taking into consideration the working surroundings of the anchor. The natural frequency distribution of the system under various preload forces of the anchor was analyzed with ANSYS. Our results show that each order of the system frequency varied with an increase in preload forces. A single order frequency decreased with an increase in the preload force. A preload force affected low-order frequencies more than high-order frequencies. We obtained a functional relationship by fitting preload forces and fundamental frequencies, which was in agreement with our theretical considerations. This study provides theoretical support for the detection of preload forces.
文摘The vibration response formulas of the mechanical system under the affect of thevari-frequency exciting force are deduced. It is proved by the theoretical analysis and experimentalresults that the vibration response amplitude of the mechanical system under the affect of thevari-frequency exciting force is far smaller than that under the affect of the constant frequency exciting force on condition that the exciting force amplitudes are just the same;while the vari-fre-quency rate a increases to 5 Hz per second the vibration amplitude will decrease to 10% only as lowas that under the affect of the constant frequency exciting force. All these conclusions will be of significance for revealing the mechanism of suppressing chatter in van-speed cutting and analyzing theexperimental results of sine-wave scanning exciting test.