In this study, coupled equations of the motion of a particle in a fluid forced vortex were investigated using the differential transformation method (DTM) with the Pad6 approximation and the differential quadrature ...In this study, coupled equations of the motion of a particle in a fluid forced vortex were investigated using the differential transformation method (DTM) with the Pad6 approximation and the differential quadrature method (DO_M). The significant contribution of the work is the introduction of two new, fast and efficient solutions for a spherical particle in a forced vortex that are improvements over the previous numerical results in the literature. These methods represent approximations with a high degree of accuracy and minimal computational effort for studying the particle motion in a fluid forced vortex. In addition, the velocity profiles (angular and radial) and the position trajectory of a particle in a fluid forced vortex are described in the current study.展开更多
The concept vortex force in aerodynamics is sys- tematically examined based on a new steady vortex-force theory (Wu et al., Vorticity and vortex dynamics, Springer, 2006) which expresses the aerodynamic force (and ...The concept vortex force in aerodynamics is sys- tematically examined based on a new steady vortex-force theory (Wu et al., Vorticity and vortex dynamics, Springer, 2006) which expresses the aerodynamic force (and moment) by the volume and boundary integrals of the Lamb vector. In this paper, the underlying physics of this theory is explored, including the general role of the Lamb vector in non- linear aerodynamics, its initial formation, and its relevance to the total-pressure non-uniformity. As a typical example, the theory is applied to the flow over a slender delta wing at a large angle of attack. The highly localized flow structures with high Lamb-vector peaks are identified in terms of their net contribution to various constituents of the total aerody-namic force. This vortex-force diagnosis sheds new light on the flow control and configuration optimization.展开更多
A narrow strip is used to control mean and fluctuating forces on a circular cylinder at Reynolds numbers from 2.0 ×10^4 to 1.0 ×^ 10^5. The axes of the strip and cylinder are parallel. The control parameters...A narrow strip is used to control mean and fluctuating forces on a circular cylinder at Reynolds numbers from 2.0 ×10^4 to 1.0 ×^ 10^5. The axes of the strip and cylinder are parallel. The control parameters are strip width ratio and strip position characterized by angle of attack and distance from the cylinder. Wind tunnel tests show that the vortex shedding from both sides of the cylinder can be suppressed, and mean drag and fluctuating lift on the cylinder can be reduced if the strip is installed in an effective zone downstream of the cylinder. A phenomenon of mono-side vortex shedding is found. The strip-induced local changes of velocity profiles in the near wake of the cylinder are measured, and the relation between base suction and peak value in the power spectrum of fluctuating lift is studied. The control mechanism is then discussed from different points of view.展开更多
By using a special momentum approach and with the help of interchange between singularity velocity and induced flow velocity, we derive in a physical way explicit force formulas for twodimensional inviscid flow involv...By using a special momentum approach and with the help of interchange between singularity velocity and induced flow velocity, we derive in a physical way explicit force formulas for twodimensional inviscid flow involving multiple bound and free vortices, multiple airfoils, and vortex production. These force formulas hold individually for each airfoil thus allowing for force decomposition, and the contributions to forces from singularities(such as bound and image vortices,sources, and doublets) and bodies out of an airfoil are related to their induced velocities at the locations of singularities inside this airfoil. The force contribution due to vortex production is related to the vortex production rate and the distance between each pair of vortices in production, thus frameindependent. The formulas are validated against a number of standard problems. These force formulas, which generalize the classic Kutta–Joukowski theorem(for a single bound vortex) and the recent generalized Lagally theorem(for problems without a bound vortex and vortex production) to more general cases, can be used to identify or understand the roles of outside vortices and bodies on the forces of the actual body, optimize arrangement of outside vortices and bodies for force enhancement or reduction, and derive analytical force formulas once the flow field is given or known.展开更多
The hydraulic force on the reversible pump turbine might cause serious problems(e.g., the abnormal stops due to large vibrations of the machine), affecting the safe operations of the pumped energy storage power plan...The hydraulic force on the reversible pump turbine might cause serious problems(e.g., the abnormal stops due to large vibrations of the machine), affecting the safe operations of the pumped energy storage power plants. In the present paper, the hydraulic force on the impeller of a model reversible pump turbine is quantitatively investigated through numerical simulations. It is found that both the amplitude of the force and its dominant components strongly depend on the operating conditions(e.g., the turbine mode, the runaway mode and the turbine brake mode) and the guide vane openings. For example, the axial force parallel with the shaft is prominent in the turbine mode while the force perpendicular to the shaft is the dominant near the runaway and the turbine brake modes. The physical origins of the hydraulic force are further revealed by the analysis of the fluid states inside the impeller.展开更多
文摘In this study, coupled equations of the motion of a particle in a fluid forced vortex were investigated using the differential transformation method (DTM) with the Pad6 approximation and the differential quadrature method (DO_M). The significant contribution of the work is the introduction of two new, fast and efficient solutions for a spherical particle in a forced vortex that are improvements over the previous numerical results in the literature. These methods represent approximations with a high degree of accuracy and minimal computational effort for studying the particle motion in a fluid forced vortex. In addition, the velocity profiles (angular and radial) and the position trajectory of a particle in a fluid forced vortex are described in the current study.
基金the National Natural Science Foundation of China(10572005).
文摘The concept vortex force in aerodynamics is sys- tematically examined based on a new steady vortex-force theory (Wu et al., Vorticity and vortex dynamics, Springer, 2006) which expresses the aerodynamic force (and moment) by the volume and boundary integrals of the Lamb vector. In this paper, the underlying physics of this theory is explored, including the general role of the Lamb vector in non- linear aerodynamics, its initial formation, and its relevance to the total-pressure non-uniformity. As a typical example, the theory is applied to the flow over a slender delta wing at a large angle of attack. The highly localized flow structures with high Lamb-vector peaks are identified in terms of their net contribution to various constituents of the total aerody-namic force. This vortex-force diagnosis sheds new light on the flow control and configuration optimization.
基金the National Natural Science Foundation of China(10172087 and 10472124).
文摘A narrow strip is used to control mean and fluctuating forces on a circular cylinder at Reynolds numbers from 2.0 ×10^4 to 1.0 ×^ 10^5. The axes of the strip and cylinder are parallel. The control parameters are strip width ratio and strip position characterized by angle of attack and distance from the cylinder. Wind tunnel tests show that the vortex shedding from both sides of the cylinder can be suppressed, and mean drag and fluctuating lift on the cylinder can be reduced if the strip is installed in an effective zone downstream of the cylinder. A phenomenon of mono-side vortex shedding is found. The strip-induced local changes of velocity profiles in the near wake of the cylinder are measured, and the relation between base suction and peak value in the power spectrum of fluctuating lift is studied. The control mechanism is then discussed from different points of view.
基金supported by the National Basic Research Program of China (No. 2012CB720205)partly by the Natural National Science Foundation of China (No. 11472157)
文摘By using a special momentum approach and with the help of interchange between singularity velocity and induced flow velocity, we derive in a physical way explicit force formulas for twodimensional inviscid flow involving multiple bound and free vortices, multiple airfoils, and vortex production. These force formulas hold individually for each airfoil thus allowing for force decomposition, and the contributions to forces from singularities(such as bound and image vortices,sources, and doublets) and bodies out of an airfoil are related to their induced velocities at the locations of singularities inside this airfoil. The force contribution due to vortex production is related to the vortex production rate and the distance between each pair of vortices in production, thus frameindependent. The formulas are validated against a number of standard problems. These force formulas, which generalize the classic Kutta–Joukowski theorem(for a single bound vortex) and the recent generalized Lagally theorem(for problems without a bound vortex and vortex production) to more general cases, can be used to identify or understand the roles of outside vortices and bodies on the forces of the actual body, optimize arrangement of outside vortices and bodies for force enhancement or reduction, and derive analytical force formulas once the flow field is given or known.
基金Project supported by the National Natural Science Foun-dation of China(Project No.51506051)
文摘The hydraulic force on the reversible pump turbine might cause serious problems(e.g., the abnormal stops due to large vibrations of the machine), affecting the safe operations of the pumped energy storage power plants. In the present paper, the hydraulic force on the impeller of a model reversible pump turbine is quantitatively investigated through numerical simulations. It is found that both the amplitude of the force and its dominant components strongly depend on the operating conditions(e.g., the turbine mode, the runaway mode and the turbine brake mode) and the guide vane openings. For example, the axial force parallel with the shaft is prominent in the turbine mode while the force perpendicular to the shaft is the dominant near the runaway and the turbine brake modes. The physical origins of the hydraulic force are further revealed by the analysis of the fluid states inside the impeller.