Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and t...Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and temperature and pore water salinity.With these assumptions,the BSR depth can be used to estimate the geothermal gradient(GTG)based on the availability of in-situ temperature measurements.This calculation is done assuming a 1D conductive model based on available in-situ temperature measurement at site NGHP-01-17 in the study area.However,in the presence of seafloor topography,the conductive temperature field in the subsurface is affected by lateral refraction of heat,which focuses heat in topographic lows and away from topographic highs.The 1D estimate of GTG in the Andaman Forearc Basin has been validated by drilling results from the NGHP-01 expedition.2D analytic modeling to estimate the effects of topography is performed earlier along selected seismic profiles in the study area.The study extended to estimate the effect of topography in 3D using a numerical model.The corrected GTG data allow us to determine GTG values free of topographic effect.The difference between the estimated GTG and values corrected for the 3D topographic effect varies up to~5℃/km.These conclude that the topographic correction is relatively small compared to other uncertainties in the 1D model and that apparent GTG determined with the 1D model captures the major features,although the correction is needed prior to interpreting subtle features of the derived GTG maps.展开更多
Interpretation of new multichannel seismic reflection data from the Andaman Forearc Basin(AFB) in the northern Indian Ocean is presented here. The highquality multichannel seismic data from the Andaman Forearc region ...Interpretation of new multichannel seismic reflection data from the Andaman Forearc Basin(AFB) in the northern Indian Ocean is presented here. The highquality multichannel seismic data from the Andaman Forearc region enable us to examine the seismic characters and to demarcate seismic sequences bounded by distinct unconformities. Ages of marked seismic horizons have been calibrated with available litholog data from nearby industry boreholes. Seismic interpretation of new data shows that the AFB is filled with * 4.5-s-two way travel time(TWT) thick Neogene to Recent sediments. The entire basin assemblage exhibits two distinct major sequences pertaining to the Neogene and Quaternary times. A large part of the basin is filled with intermittent mass transport deposits(MTD). We infer that the episodic uplift of the Invisible Bank, protuberance of the outerarc and regular deformation through reactivation of preexisting normal faults since the Pleistocene could be attributed as causal mechanisms for the MTDs. Strong bottom simulating reflectors are identified in the Late Miocene and younger sediments of the outerarc and AFB at a depth of * 0.6 s TWT and correspond to the presence of gas hydrates in this region. Our interpretations have significant implications for geodynamic as well as resource exploration in the AFB.展开更多
文摘Methane gas hydrate related bottom-simulating reflectors(BSRs)are imaged based on the in-line and cross-line multi-channel seismic(MCS)data from the Andaman Forearc Basin.The depth of the BSR depends on pressure and temperature and pore water salinity.With these assumptions,the BSR depth can be used to estimate the geothermal gradient(GTG)based on the availability of in-situ temperature measurements.This calculation is done assuming a 1D conductive model based on available in-situ temperature measurement at site NGHP-01-17 in the study area.However,in the presence of seafloor topography,the conductive temperature field in the subsurface is affected by lateral refraction of heat,which focuses heat in topographic lows and away from topographic highs.The 1D estimate of GTG in the Andaman Forearc Basin has been validated by drilling results from the NGHP-01 expedition.2D analytic modeling to estimate the effects of topography is performed earlier along selected seismic profiles in the study area.The study extended to estimate the effect of topography in 3D using a numerical model.The corrected GTG data allow us to determine GTG values free of topographic effect.The difference between the estimated GTG and values corrected for the 3D topographic effect varies up to~5℃/km.These conclude that the topographic correction is relatively small compared to other uncertainties in the 1D model and that apparent GTG determined with the 1D model captures the major features,although the correction is needed prior to interpreting subtle features of the derived GTG maps.
文摘Interpretation of new multichannel seismic reflection data from the Andaman Forearc Basin(AFB) in the northern Indian Ocean is presented here. The highquality multichannel seismic data from the Andaman Forearc region enable us to examine the seismic characters and to demarcate seismic sequences bounded by distinct unconformities. Ages of marked seismic horizons have been calibrated with available litholog data from nearby industry boreholes. Seismic interpretation of new data shows that the AFB is filled with * 4.5-s-two way travel time(TWT) thick Neogene to Recent sediments. The entire basin assemblage exhibits two distinct major sequences pertaining to the Neogene and Quaternary times. A large part of the basin is filled with intermittent mass transport deposits(MTD). We infer that the episodic uplift of the Invisible Bank, protuberance of the outerarc and regular deformation through reactivation of preexisting normal faults since the Pleistocene could be attributed as causal mechanisms for the MTDs. Strong bottom simulating reflectors are identified in the Late Miocene and younger sediments of the outerarc and AFB at a depth of * 0.6 s TWT and correspond to the presence of gas hydrates in this region. Our interpretations have significant implications for geodynamic as well as resource exploration in the AFB.