The simulation of the transport and fate of an oil slick, accidentally introduced in the marine environment, is the focus of this research. An oil spill dispersion forecasting system (DIAVLOS forecasting system), ba...The simulation of the transport and fate of an oil slick, accidentally introduced in the marine environment, is the focus of this research. An oil spill dispersion forecasting system (DIAVLOS forecasting system), based on wind, wave and ocean circulation forecasting models is developed. The 3-D oil spill model, by the University of Thessaloniki, is based on a Lagrangian (tracer) model that accounts for the transport-diffusion-dispersion and physicochemical evolution of an oil slick. The high resolution meteorological, hydrodynamic and wave models are coupled with the operational systems ALERMO and SKIRON of the University of Athens. The modelling system was successfully assembled and tested under theoretical and realistic scenarios, in order to be applied in forecasting mode and be used by local authorities when an accident occurs. As a result, a 48-hours oil spill dispersion forecasting system was synthesized aiming primarily at the oil spill management at the Burgas-Alexandroupolis oil-pipe terminal, part of a greater busy coastal basin in North Aegean.展开更多
The effects of different Planetary Boundary Layer(PBL) structures on pollutant dispersion processes within two idealized street canyon configurations and a realistic urban area were numerically examined by a Computa...The effects of different Planetary Boundary Layer(PBL) structures on pollutant dispersion processes within two idealized street canyon configurations and a realistic urban area were numerically examined by a Computational Fluid Dynamics(CFD) model. The boundary conditions of different PBL structures/conditions were provided by simulations of the Weather Researching and Forecasting model. The simulated results of the idealized 2D and 3D street canyon experiments showed that the increment of PBL instability favored the downward transport of momentum from the upper flow above the roof to the pedestrian level within the street canyon. As a result, the flow and turbulent fields within the street canyon under the more unstable PBL condition are stronger. Therefore, more pollutants within the street canyon would be removed by the stronger advection and turbulent diffusion processes under the unstable PBL condition. On the contrary, more pollutants would be concentrated in the street canyon under the stable PBL condition. In addition, the simulations of the realistic building cluster experiments showed that the density of buildings was a crucial factor determining the dynamic effects of the PBL structure on the flow patterns. The momentum field within a denser building configuration was mostly transported from the upper flow, and was more sensitive to the PBL structures than that of the sparser building configuration. Finally, it was recommended to use the Mellor-Yamada-Nakanishi-Niino(MYNN) PBL scheme, which can explicitly output the needed turbulent variables, to provide the boundary conditions to the CFD simulation.展开更多
文摘The simulation of the transport and fate of an oil slick, accidentally introduced in the marine environment, is the focus of this research. An oil spill dispersion forecasting system (DIAVLOS forecasting system), based on wind, wave and ocean circulation forecasting models is developed. The 3-D oil spill model, by the University of Thessaloniki, is based on a Lagrangian (tracer) model that accounts for the transport-diffusion-dispersion and physicochemical evolution of an oil slick. The high resolution meteorological, hydrodynamic and wave models are coupled with the operational systems ALERMO and SKIRON of the University of Athens. The modelling system was successfully assembled and tested under theoretical and realistic scenarios, in order to be applied in forecasting mode and be used by local authorities when an accident occurs. As a result, a 48-hours oil spill dispersion forecasting system was synthesized aiming primarily at the oil spill management at the Burgas-Alexandroupolis oil-pipe terminal, part of a greater busy coastal basin in North Aegean.
基金supported by the China Meteorological Administration Special Public Welfare Research Fund (No. GYHY201106033)the National Natural Science Foundation of China (No. 41175004)
文摘The effects of different Planetary Boundary Layer(PBL) structures on pollutant dispersion processes within two idealized street canyon configurations and a realistic urban area were numerically examined by a Computational Fluid Dynamics(CFD) model. The boundary conditions of different PBL structures/conditions were provided by simulations of the Weather Researching and Forecasting model. The simulated results of the idealized 2D and 3D street canyon experiments showed that the increment of PBL instability favored the downward transport of momentum from the upper flow above the roof to the pedestrian level within the street canyon. As a result, the flow and turbulent fields within the street canyon under the more unstable PBL condition are stronger. Therefore, more pollutants within the street canyon would be removed by the stronger advection and turbulent diffusion processes under the unstable PBL condition. On the contrary, more pollutants would be concentrated in the street canyon under the stable PBL condition. In addition, the simulations of the realistic building cluster experiments showed that the density of buildings was a crucial factor determining the dynamic effects of the PBL structure on the flow patterns. The momentum field within a denser building configuration was mostly transported from the upper flow, and was more sensitive to the PBL structures than that of the sparser building configuration. Finally, it was recommended to use the Mellor-Yamada-Nakanishi-Niino(MYNN) PBL scheme, which can explicitly output the needed turbulent variables, to provide the boundary conditions to the CFD simulation.