期刊文献+
共找到61,068篇文章
< 1 2 250 >
每页显示 20 50 100
Arctic Sea Ice Variations in the First Half of the 20th Century:A New Reconstruction Based on Hydrometeorological Data 被引量:1
1
作者 Vladimir A.SEMENOV Tatiana A.ALDONINA +2 位作者 Fei LI Noel Sebastian KEENLYSIDE Lin WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1483-1495,1686-1693,共21页
The shrinking Arctic sea-ice area(SIA) in recent decades is a striking manifestation of the ongoing climate change.Variations of the Arctic sea ice have been continuously observed by satellites since 1979, relatively ... The shrinking Arctic sea-ice area(SIA) in recent decades is a striking manifestation of the ongoing climate change.Variations of the Arctic sea ice have been continuously observed by satellites since 1979, relatively well monitored since the 1950s, but are highly uncertain in the earlier period due to a lack of observations. Several reconstructions of the historical gridded sea-ice concentration(SIC) data were recently presented based on synthesized regional sea-ice observations or by applying a hybrid model–empirical approach. Here, we present an SIC reconstruction for the period1901–2019 based on established co-variability between SIC and surface air temperature, sea surface temperature, and sea level pressure patterns. The reconstructed sea-ice data for March and September are compared to the frequently used Had ISST1.1 and SIBT1850 datasets. Our reconstruction shows a large decrease in SIA from the 1920 to 1940 concurrent with the Early 20th Century Warming event in the Arctic. Such a negative SIA anomaly is absent in Had ISST1.1 data. The amplitude of the SIA anomaly reaches about 0.8 mln km^(2) in March and 1.5 mln km^(2) in September. The anomaly is about three times stronger than that in the SIBT1850 dataset. The larger decrease in SIA in September is largely due to the stronger SIC reduction in the western sector of the Arctic Ocean in the 70°–80°N latitudinal zone. Our reconstruction provides gridded monthly data that can be used as boundary conditions for atmospheric reanalyses and model experiments to study the Arctic climate for the first half of the 20th century. 展开更多
关键词 Arctic sea ice Arctic climate early 20th century warming climate variability
下载PDF
A Deep Learning Approach for Forecasting Thunderstorm Gusts in the Beijing–Tianjin–Hebei Region 被引量:1
2
作者 Yunqing LIU Lu YANG +3 位作者 Mingxuan CHEN Linye SONG Lei HAN Jingfeng XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1342-1363,共22页
Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly b... Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly based on traditional subjective methods,which fails to achieve high-resolution and high-frequency gridded forecasts based on multiple observation sources.In this paper,we propose a deep learning method called Thunderstorm Gusts TransU-net(TGTransUnet)to forecast thunderstorm gusts in North China based on multi-source gridded product data from the Institute of Urban Meteorology(IUM)with a lead time of 1 to 6 h.To determine the specific range of thunderstorm gusts,we combine three meteorological variables:radar reflectivity factor,lightning location,and 1-h maximum instantaneous wind speed from automatic weather stations(AWSs),and obtain a reasonable ground truth of thunderstorm gusts.Then,we transform the forecasting problem into an image-to-image problem in deep learning under the TG-TransUnet architecture,which is based on convolutional neural networks and a transformer.The analysis and forecast data of the enriched multi-source gridded comprehensive forecasting system for the period 2021–23 are then used as training,validation,and testing datasets.Finally,the performance of TG-TransUnet is compared with other methods.The results show that TG-TransUnet has the best prediction results at 1–6 h.The IUM is currently using this model to support the forecasting of thunderstorm gusts in North China. 展开更多
关键词 thunderstorm gusts deep learning weather forecasting convolutional neural network TRANSFORMER
下载PDF
Seasonal Characteristics of Forecasting Uncertainties in Surface PM_(2.5)Concentration Associated with Forecast Lead Time over the Beijing-Tianjin-Hebei Region
3
作者 Qiuyan DU Chun ZHAO +6 位作者 Jiawang FENG Zining YANG Jiamin XU Jun GU Mingshuai ZHANG Mingyue XU Shengfu LIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期801-816,共16页
Forecasting uncertainties among meteorological fields have long been recognized as the main limitation on the accuracy and predictability of air quality forecasts.However,the particular impact of meteorological foreca... Forecasting uncertainties among meteorological fields have long been recognized as the main limitation on the accuracy and predictability of air quality forecasts.However,the particular impact of meteorological forecasting uncertainties on air quality forecasts specific to different seasons is still not well known.In this study,a series of forecasts with different forecast lead times for January,April,July,and October of 2018 are conducted over the Beijing-Tianjin-Hebei(BTH)region and the impacts of meteorological forecasting uncertainties on surface PM_(2.5)concentration forecasts with each lead time are investigated.With increased lead time,the forecasted PM_(2.5)concentrations significantly change and demonstrate obvious seasonal variations.In general,the forecasting uncertainties in monthly mean surface PM_(2.5)concentrations in the BTH region due to lead time are the largest(80%)in spring,followed by autumn(~50%),summer(~40%),and winter(20%).In winter,the forecasting uncertainties in total surface PM_(2.5)mass due to lead time are mainly due to the uncertainties in PBL heights and hence the PBL mixing of anthropogenic primary particles.In spring,the forecasting uncertainties are mainly from the impacts of lead time on lower-tropospheric northwesterly winds,thereby further enhancing the condensation production of anthropogenic secondary particles by the long-range transport of natural dust.In summer,the forecasting uncertainties result mainly from the decrease in dry and wet deposition rates,which are associated with the reduction of near-surface wind speed and precipitation rate.In autumn,the forecasting uncertainties arise mainly from the change in the transport of remote natural dust and anthropogenic particles,which is associated with changes in the large-scale circulation. 展开更多
关键词 PM_(2.5) forecasting uncertainties forecast lead time meteorological fields Beijing-Tianjin-Hebei region
下载PDF
Promising Results Predict Role for Artificial Intelligence in Weather Forecasting
4
作者 Mitch Leslie 《Engineering》 SCIE EI CAS CSCD 2024年第8期10-12,共3页
Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,... Artificial intelligence(AI)has already demonstrated its proficiency at difficult scientific tasks like predicting how proteins will fold and identifying new astronomical objects in masses of observational data[1].Now,recent results suggest that AI also excels at weather forecasting.For global predictions,GraphCast,an AI system developed by Google subsidiary DeepMind(London,UK),outperforms the state-of-the-art model from the European Centre for Medium-Range Weather Forecasts(ECMWF),providing more accurate projections of variables such as temperature and humidity 90%of the time[2,3].Other AI systems,including Pangu-Weather from the Chinese tech company Huawei(Shenzhen,China)[4],can also match or beat traditional global forecasting models. 展开更多
关键词 forecasting humidity WEAtheR
下载PDF
Scientific Advances and Weather Services of the China Meteorological Administration’s National Forecasting Systems during the Beijing 2022 Winter Olympics
5
作者 Guo DENG Xueshun SHEN +23 位作者 Jun DU Jiandong GONG Hua TONG Liantang DENG Zhifang XU Jing CHEN Jian SUN Yong WANG Jiangkai HU Jianjie WANG Mingxuan CHEN Huiling YUAN Yutao ZHANG Hongqi LI Yuanzhe WANG Li GAO Li SHENG Da LI Li LI Hao WANG Ying ZHAO Yinglin LI Zhili LIU Wenhua GUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期767-776,共10页
Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational... Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational techniques,and experience.This made providing meteorological services for this event particularly challenging.The China Meteorological Administration(CMA)Earth System Modeling and Prediction Centre,achieved breakthroughs in research on short-and medium-term deterministic and ensemble numerical predictions.Several key technologies crucial for precise winter weather services during the Winter Olympics were developed.A comprehensive framework,known as the Operational System for High-Precision Weather Forecasting for the Winter Olympics,was established.Some of these advancements represent the highest level of capabilities currently available in China.The meteorological service provided to the Beijing 2022 Games also exceeded previous Winter Olympic Games in both variety and quality.This included achievements such as the“100-meter level,minute level”downscaled spatiotemporal resolution and forecasts spanning 1 to 15 days.Around 30 new technologies and over 60 kinds of products that align with the requirements of the Winter Olympics Organizing Committee were developed,and many of these techniques have since been integrated into the CMA’s operational national forecasting systems.These accomplishments were facilitated by a dedicated weather forecasting and research initiative,in conjunction with the preexisting real-time operational forecasting systems of the CMA.This program represents one of the five subprograms of the WMO’s high-impact weather forecasting demonstration project(SMART2022),and continues to play an important role in their Regional Association(RA)II Research Development Project(Hangzhou RDP).Therefore,the research accomplishments and meteorological service experiences from this program will be carried forward into forthcoming highimpact weather forecasting activities.This article provides an overview and assessment of this program and the operational national forecasting systems. 展开更多
关键词 Beijing Winter Olympic Games CMA national forecasting system data assimilation ensemble forecast bias correction and downscaling machine learning-based fusion methods
下载PDF
Better use of experience from other reservoirs for accurate production forecasting by learn-to-learn method
6
作者 Hao-Chen Wang Kai Zhang +7 位作者 Nancy Chen Wen-Sheng Zhou Chen Liu Ji-Fu Wang Li-Ming Zhang Zhi-Gang Yu Shi-Ti Cui Mei-Chun Yang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期716-728,共13页
To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studie... To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studied to make predictions accurate.However,the permeability field,well patterns,and development regime must all be similar for two reservoirs to be considered in the same class.This results in very few available experiences from other reservoirs even though there is a lot of historical information on numerous reservoirs because it is difficult to find such similar reservoirs.This paper proposes a learn-to-learn method,which can better utilize a vast amount of historical data from various reservoirs.Intuitively,the proposed method first learns how to learn samples before directly learning rules in samples.Technically,by utilizing gradients from networks with independent parameters and copied structure in each class of reservoirs,the proposed network obtains the optimal shared initial parameters which are regarded as transferable information across different classes.Based on that,the network is able to predict future production indices for the target reservoir by only training with very limited samples collected from reservoirs in the same class.Two cases further demonstrate its superiority in accuracy to other widely-used network methods. 展开更多
关键词 Production forecasting Multiple patterns Few-shot learning Transfer learning
下载PDF
Comparison among the UECM Model, and the Composite Model in Forecasting Malaysian Imports
7
作者 Mohamed A. H. Milad Hanan Moh. B. Duzan 《Open Journal of Statistics》 2024年第2期163-178,共16页
For more than a century, forecasting models have been crucial in a variety of fields. Models can offer the most accurate forecasting outcomes if error terms are normally distributed. Finding a good statistical model f... For more than a century, forecasting models have been crucial in a variety of fields. Models can offer the most accurate forecasting outcomes if error terms are normally distributed. Finding a good statistical model for time series predicting imports in Malaysia is the main target of this study. The decision made during this study mostly addresses the unrestricted error correction model (UECM), and composite model (Combined regression—ARIMA). The imports of Malaysia from the first quarter of 1991 to the third quarter of 2022 are employed in this study’s quarterly time series data. The forecasting outcomes of the current study demonstrated that the composite model offered more probabilistic data, which improved forecasting the volume of Malaysia’s imports. The composite model, and the UECM model in this study are linear models based on responses to Malaysia’s imports. Future studies might compare the performance of linear and nonlinear models in forecasting. 展开更多
关键词 Composite Model UECM ARIMA forecasting MALAYSIA
下载PDF
Weather-Driven Solar Power Forecasting Using D-Informer:Enhancing Predictions with Climate Variables
8
作者 Chenglian Ma Rui Han +2 位作者 Zhao An Tianyu Hu Meizhu Jin 《Energy Engineering》 EI 2024年第5期1245-1261,共17页
Precise forecasting of solar power is crucial for the development of sustainable energy systems.Contemporary forecasting approaches often fail to adequately consider the crucial role of weather factors in photovoltaic... Precise forecasting of solar power is crucial for the development of sustainable energy systems.Contemporary forecasting approaches often fail to adequately consider the crucial role of weather factors in photovoltaic(PV)power generation and encounter issues such as gradient explosion or disappearance when dealing with extensive time-series data.To overcome these challenges,this research presents a cutting-edge,multi-stage forecasting method called D-Informer.This method skillfully merges the differential transformation algorithm with the Informer model,leveraging a detailed array of meteorological variables and historical PV power generation records.The D-Informer model exhibits remarkable superiority over competing models across multiple performance metrics,achieving on average a 67.64%reduction in mean squared error(MSE),a 49.58%decrease in mean absolute error(MAE),and a 43.43%reduction in root mean square error(RMSE).Moreover,it attained an R2 value as high as 0.9917 during the winter season,highlighting its precision and dependability.This significant advancement can be primarily attributed to the incorporation of a multi-head self-attention mechanism,which greatly enhances the model’s ability to identify complex interactions among diverse input variables,and the inclusion of weather variables,enriching the model’s input data and strengthening its predictive accuracy in time series analysis.Additionally,the experimental results confirm the effectiveness of the proposed approach. 展开更多
关键词 Power forecasting deep learning weather-driven solar power
下载PDF
The Influence of Air Pollution Concentrations on Solar Irradiance Forecasting Using CNN-LSTM-mRMR Feature Extraction
9
作者 Ramiz Gorkem Birdal 《Computers, Materials & Continua》 SCIE EI 2024年第3期4015-4028,共14页
Maintaining a steady power supply requires accurate forecasting of solar irradiance,since clean energy resources do not provide steady power.The existing forecasting studies have examined the limited effects of weathe... Maintaining a steady power supply requires accurate forecasting of solar irradiance,since clean energy resources do not provide steady power.The existing forecasting studies have examined the limited effects of weather conditions on solar radiation such as temperature and precipitation utilizing convolutional neural network(CNN),but no comprehensive study has been conducted on concentrations of air pollutants along with weather conditions.This paper proposes a hybrid approach based on deep learning,expanding the feature set by adding new air pollution concentrations,and ranking these features to select and reduce their size to improve efficiency.In order to improve the accuracy of feature selection,a maximum-dependency and minimum-redundancy(mRMR)criterion is applied to the constructed feature space to identify and rank the features.The combination of air pollution data with weather conditions data has enabled the prediction of solar irradiance with a higher accuracy.An evaluation of the proposed approach is conducted in Istanbul over 12 months for 43791 discrete times,with the main purpose of analyzing air data,including particular matter(PM10 and PM25),carbon monoxide(CO),nitric oxide(NOX),nitrogen dioxide(NO_(2)),ozone(O₃),sulfur dioxide(SO_(2))using a CNN,a long short-term memory network(LSTM),and MRMR feature extraction.Compared with the benchmark models with root mean square error(RMSE)results of 76.2,60.3,41.3,32.4,there is a significant improvement with the RMSE result of 5.536.This hybrid model presented here offers high prediction accuracy,a wider feature set,and a novel approach based on air concentrations combined with weather conditions for solar irradiance prediction. 展开更多
关键词 forecasting solar irradiance air pollution convolutional neural network long short-term memory network mRMR feature extraction
下载PDF
Building the ARIMA Model for Forecasting the Production of Vietnam’s Coffee Export
10
作者 Duy Quang Phung Quoc Thang Trinh +4 位作者 Quang Truong Do Ngan Giang Nguyen Van Ha Nguyen Gia Khiem Ngo Thi Minh Ngoc Tran 《Journal of Applied Mathematics and Physics》 2024年第4期1237-1246,共10页
Coffee is a significant industry, accounting for 3% of Vietnam’s GDP, with annual export turnover consistently exceeding USD 3 billion. Despite global economic challenges affecting purchasing power at various times, ... Coffee is a significant industry, accounting for 3% of Vietnam’s GDP, with annual export turnover consistently exceeding USD 3 billion. Despite global economic challenges affecting purchasing power at various times, Vietnam’s coffee exports in December 2023 continued to surge, reaching the highest level in the past 9 months at 190,000 tons, a 59.3% increase compared to November 2023, but still a slight 3.5% decrease from the same period last year. The export turnover reached USD 538 million, a 51% increase from November 2023 and a 26.4% increase from the same period last year. Therefore, forecasting the coffee export volume holds significant importance for coffee producers nationwide. This research employs the Box-Jenkins method to construct an ARIMA model for forecasting Vietnam’s coffee export volume based on annual data published by the General Statistics Office. Results indicate that among the models considered, the ARIMA(1, 1, 2) model is the most suitable. The study also provides short-term forecasts for Vietnam’s coffee export volume. However, the current model is limited to forecasting and is not yet optimized, as the assumed linearity in the model is a simplification. 展开更多
关键词 ARIMA forecasting Coffee Export Volume Data Science
下载PDF
The forecasting efficiency under different selected regions by Pattern Informatics Method and seismic potential estimation in the North-South Seismic Zone
11
作者 Weixi Tian Yongxian Zhang 《Earthquake Science》 2024年第4期368-382,共15页
In 2022,four earthquakes with M_(S)≥6.0 including the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes occurred in the North-South Seismic Zone(NSSZ),which demonstrated high and strong seismicity.Pattern Informatics(... In 2022,four earthquakes with M_(S)≥6.0 including the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes occurred in the North-South Seismic Zone(NSSZ),which demonstrated high and strong seismicity.Pattern Informatics(PI)method,as an effective long and medium term earthquake forecasting method,has been applied to the strong earthquake forecasting in Chinese mainland and results have shown the positive performance.The earthquake catalog with magnitude above M_(S)3.0 since 1970 provided by China Earthquake Networks Center was employed in this study and the Receiver Operating Characteristic(ROC)method was applied to test the forecasting efficiency of the PI method in each selected region related to the North-South Seismic Zone systematically.Based on this,we selected the area with the best ROC testing result and analyzed the evolution process of the PI hotspot map reflecting the small seismic activity pattern prior to the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes.A“forward”forecast for the area was carried out to assess seismic risk.The study shows the following.1)PI forecasting has higher forecasting efficiency in the selected study region where the difference of seismicity in any place of the region is smaller.2)In areas with smaller differences of seismicity,the activity pattern of small earthquakes prior to the Menyuan M_(S)6.9 and Luding M_(S)6.8 earthquakes can be obtained by analyzing the spatio-temporal evolution process of the PI hotspot map.3)The hotspot evolution in and around the southern Tazang fault in the study area is similar to that prior to the strong earthquakes,which suggests the possible seismic hazard in the future.This study could provide some ideas to the seismic hazard assessment in other regions with high seismicity,such as Japan,Californi,Turkey,and Indonesia. 展开更多
关键词 Luding M_(S)6.8 and Menyuan M_(S)6.9 earthquake Pattern informatics Method North-South Seismic Zone earthquake forecasting seismic activity pattern.
下载PDF
Women in the Musical Culture of Danzig in the First Half of the 20th Century
12
作者 Joanna Schiller-Rydzewska 《Cultural and Religious Studies》 2023年第1期1-8,共8页
The musical culture of pre-war Danzig/Gdansk remains an area that is not well enough recognized in the scholarly literature.Numerous traces of this musical life are preserved in the collections of the Gdansk Library o... The musical culture of pre-war Danzig/Gdansk remains an area that is not well enough recognized in the scholarly literature.Numerous traces of this musical life are preserved in the collections of the Gdansk Library of the Polish Academy of Sciences.The collection ranges from scholarly publications and scores to an extensive number of concert programs and posters.The collection testifies to the dynamism and diversity of the city’s pre-war musical life.Notable among the collected materials is the role of female figures-composers,singers,and instrumentalists who made significant contributions to the shape of Gdansk musical life.In this article,I will present forgotten profiles of musically committed women:Martha Reincke,Ella Mertins,and Lotte Prins.In light of the surviving materials,it can be assumed that they were significant figures in the musical culture and social life of the city. 展开更多
关键词 20th century music in Gdansk/Danzig women in musical culture Gdansk Library musical culture of Gdansk/Danzig
下载PDF
Will the Globe Encounter the Warmest Winter after the Hottest Summer in 2023? 被引量:2
13
作者 Fei ZHENG Shuai HU +17 位作者 Jiehua MA Lin WANG Kexin LI Bo WU Qing BAO Jingbei PENG Chaofan LI Haifeng ZONG Yao YAO Baoqiang TIAN Hong CHEN Xianmei LANG Fangxing FAN Xiao DONG Yanling ZHAN Tao ZHU Tianjun ZHOU Jiang ZHU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期581-586,共6页
In the boreal summer and autumn of 2023,the globe experienced an extremely hot period across both oceans and continents.The consecutive record-breaking mean surface temperature has caused many to speculate upon how th... In the boreal summer and autumn of 2023,the globe experienced an extremely hot period across both oceans and continents.The consecutive record-breaking mean surface temperature has caused many to speculate upon how the global temperature will evolve in the coming 2023/24 boreal winter.In this report,as shown in the multi-model ensemble mean(MME)prediction released by the Institute of Atmospheric Physics at the Chinese Academy of Sciences,a medium-to-strong eastern Pacific El Niño event will reach its mature phase in the following 2−3 months,which tends to excite an anomalous anticyclone over the western North Pacific and the Pacific-North American teleconnection,thus serving to modulate the winter climate in East Asia and North America.Despite some uncertainty due to unpredictable internal atmospheric variability,the global mean surface temperature(GMST)in the 2023/24 winter will likely be the warmest in recorded history as a consequence of both the El Niño event and the long-term global warming trend.Specifically,the middle and low latitudes of Eurasia are expected to experience an anomalously warm winter,and the surface air temperature anomaly in China will likely exceed 2.4 standard deviations above climatology and subsequently be recorded as the warmest winter since 1991.Moreover,the necessary early warnings are still reliable in the timely updated mediumterm numerical weather forecasts and sub-seasonal-to-seasonal prediction. 展开更多
关键词 winter climate El Niño seasonal forecast GMST
下载PDF
Non-crossing Quantile Regression Neural Network as a Calibration Tool for Ensemble Weather Forecasts 被引量:1
14
作者 Mengmeng SONG Dazhi YANG +7 位作者 Sebastian LERCH Xiang'ao XIA Gokhan Mert YAGLI Jamie M.BRIGHT Yanbo SHEN Bai LIU Xingli LIU Martin Janos MAYER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1417-1437,共21页
Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil... Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks. 展开更多
关键词 ensemble weather forecasting forecast calibration non-crossing quantile regression neural network CORP reliability diagram POST-PROCESSinG
下载PDF
Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models 被引量:1
15
作者 Lu LI Yongjiu DAI +5 位作者 Zhongwang WEI Wei SHANGGUAN Nan WEI Yonggen ZHANG Qingliang LI Xian-Xiang LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1326-1341,共16页
Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient... Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions. 展开更多
关键词 soil moisture forecasting hybrid model deep learning ConvLSTM attention mechanism
下载PDF
Preface to the Special Issue:AI Applications in Atmospheric and Oceanic Science:Pioneering the Future(Part I)
16
作者 Zhemin TAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1279-1280,共2页
As AI continues to establish itself as a cornerstone technology across various industries and scientific disciplines,its profound impact on atmospheric and oceanic science is becoming increasingly apparent.The advanta... As AI continues to establish itself as a cornerstone technology across various industries and scientific disciplines,its profound impact on atmospheric and oceanic science is becoming increasingly apparent.The advantages of AI in surmounting obstacles within our field are undeniable,as evidenced by breakthroughs in weather forecasting(e.g.,Bi et al.,2023),climate prediction(e.g.,Ham et al.,2019),AI-based parameterization schemes(e.g.,Rasp et al.,2018;Wang and Tan,2023),and beyond.Recognizing the transformative potential of AI in atmospheric and oceanic science,this special issue endeavors to explore the extensive applications of AI in our domain. 展开更多
关键词 WEAtheR forecasting PREDICTION
下载PDF
The potential for an old-growth forest to store carbon in the topsoil:A case study at Sasso Fratino,Italy
17
作者 Tommaso Chiti Nicola Benilli +1 位作者 Giovanni Mastrolonardo Giacomo Certini 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期23-32,共10页
There is considerable interest devoted to oldgrowth forests and their capacity to store carbon(C)in biomass and soil.Inventories of C stocks in old-growth forests are carried out worldwide,although there is a lack of ... There is considerable interest devoted to oldgrowth forests and their capacity to store carbon(C)in biomass and soil.Inventories of C stocks in old-growth forests are carried out worldwide,although there is a lack of information on their actual potential for C sequestration.To further understand this,soil organic carbon(SOC)was measured in one of Italy's best-preserved old-growth forests,the Sasso Fratino Integral Nature Reserve.This reserve is on the World Heritage List along with other ancient beech forests of Europe,and it is virtually untouched due to the steepness of the terrain,even before legal constraints were imposed.Although the sandstone-derived soils are often shallow,they are rich in organic matter.However,no quantification had been carried out.By systematically sampling the topsoil across the forest,we accurately determined the average amount of SOC(62.0±16.9 Mg ha^(–1))and nitrogen(4.0±1.2 Mg ha^(–1))in the top 20 cm.Using the CENTURY model,future dynamics of SOC stocks were predicted to 2050 according to two climate scenarios,A1F1 and B2,the first of high concern and the second more optimistic.The model projected an increase of 0.2 and 0.3 Mg ha^(–1)a^(–1)by 2030 under the A1F1 and B2 scenarios,respectively,suggesting that the topsoil in old-growth forests does not reach equilibrium but continues accumulating SOC.However,from 2030 to 2050,a decline in SOC accumulation is predicted,indicating SOC net loss at high altitudes under the worst-case scenario.This study confirms that soils in oldgrowth forests play a significant role in carbon sequestration.It also suggests that climate change may affect the potential of these forests to store SOC not only in the long term but also in the coming years. 展开更多
关键词 Carbon sequestration century model Climate change Forest soil Soil nitrogen
下载PDF
Longitudinal dependence of the forecast accuracy of the ionospheric total electron content in the equatorial zone
18
作者 Artem Kharakhashyan Olga Maltseva 《Geodesy and Geodynamics》 EI CSCD 2024年第5期528-541,共14页
The longitudinal dependence of the behavior of ionospheric parameters has been the subject of a number of works where significant variations are discovered.This also applies to the prediction of the ionospheric total ... The longitudinal dependence of the behavior of ionospheric parameters has been the subject of a number of works where significant variations are discovered.This also applies to the prediction of the ionospheric total electron content(TEC),which neural network methods have recently been widely used.However,the results are mainly presented for a limited set of meridians.This paper examines the longitudinal dependence of the TEC forecast accuracy in the equatorial zone.In this case,the methods are used that provided the best accuracy on three meridians:European(30°E),Southeastern(110°E)and American(75°W).Results for the stations considered are analyzed as a function of longitude using the Jet Propulsion Laboratory Global Ionosphere Map(JPL GIM)for 2015.These results are for 2 h ahead and 24 h ahead forecast.It was found that in this case,based on the metric values,three groups of architectures can be distinguished.The first group included long short-term memory(LSTM),gated recurrent unit(GRU),and temporal convolutional networks(TCN)models as a part of unidirectional deep learning models;the second group is based on the recurrent models from the first group,which were supplemented with a bidirectional algorithm,increasing the TEC forecasting accuracy by 2-3 times.The third group,which includes the bidirectional TCN architecture(BiTCN),provided the highest accuracy.For this architecture,according to data obtained for 9 equatorial stations,practical independence of the TEC prediction accuracy from longitude was observed under the following metrics(Mean Absolute Error MAE,Root Mean Square Error RMSE,Mean Absolute Percentage Error MAPE):MAE(2 h)is 0.2 TECU approximately;MAE(24 h)is 0.4 TECU approximately;RMSE(2 h)is less than 0.5 TECU except Niue station(RMSE(2 h)is 1 TECU approximately);RMSE(24 h)is in the range of 1.0-1.7 TECU;MAPE(2 h)<1%except Darwin station,MAPE(24 h)<2%.This result was confirmed by data from additional 5 stations that formed latitudinal chains in the equatorial part of the three meridians.The complete correspondence of the observational and predicted TEC values is illustrated using several stations for disturbed conditions on December 19-22,2015,which included the strongest magnetic storm in the second half of the year(min Dst=-155 nT). 展开更多
关键词 IONOSPHERE Total electron content forecasting BiGRU BiLSTM BiTCN Temporal convolution
下载PDF
Generalized load graphical forecasting method based on modal decomposition
19
作者 Lizhen Wu Peixin Chang +1 位作者 Wei Chen Tingting Pei 《Global Energy Interconnection》 EI CSCD 2024年第2期166-178,共13页
In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power su... In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power supply.”Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method. 展开更多
关键词 Load forecasting Generalized load Image processing DenseNet Modal decomposition
下载PDF
The Forecast Skills and Predictability Sources of Marine Heatwaves in the NUIST-CFS1.0 Hindcasts
20
作者 Jing MA Haiming XU +1 位作者 Changming DONG Jing-Jia LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1589-1600,共12页
Using monthly observations and ensemble hindcasts of the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS1.0) for the period 1983–2020, this study investigates the forecast s... Using monthly observations and ensemble hindcasts of the Nanjing University of Information Science and Technology Climate Forecast System(NUIST-CFS1.0) for the period 1983–2020, this study investigates the forecast skill of marine heatwaves(MHWs) over the globe and the predictability sources of the MHWs over the tropical oceans. The MHW forecasts are demonstrated to be skillful on seasonal-annual time scales, particularly in tropical oceans. The forecast skill of the MHWs over the tropical Pacific Ocean(TPO) remains high at lead times of 1–24 months, indicating a forecast better than random chance for up to two years. The forecast skill is subject to the spring predictability barrier of El Nino-Southern Oscillation(ENSO). The forecast skills for the MHWs over the tropical Indian Ocean(TIO), tropical Atlantic Ocean(TAO), and tropical Northwest Pacific(NWP) are lower than that in the TPO. A reliable forecast at lead times of up to two years is shown over the TIO, while a shorter reliable forecast window(less than 17 months) occurs for the TAO and NWP.Additionally, the forecast skills for the TIO, TAO, and NWP are seasonally dependent. Higher skills for the TIO and TAO appear in boreal spring, while a greater skill for the NWP emerges in late summer-early autumn. Further analyses suggest that ENSO serves as a critical source of predictability for MHWs over the TIO and TAO in spring and MHWs over the NWP in summer. 展开更多
关键词 marine heatwaves NUIST-CFS1.0 hindcasts forecast skill predictability source ENSO
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部