期刊文献+
共找到139篇文章
< 1 2 7 >
每页显示 20 50 100
Artificial Intelligence Based Meteorological Parameter Forecasting for Optimizing Response of Nuclear Emergency Decision Support System
1
作者 BILAL Ahmed Khan HASEEB ur Rehman +5 位作者 QAISAR Nadeem MUHAMMAD Ahmad Naveed Qureshi JAWARIA Ahad MUHAMMAD Naveed Akhtar AMJAD Farooq MASROOR Ahmad 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第10期2068-2076,共9页
This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weat... This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies. 展开更多
关键词 prediction of meteorological parameters weather research and forecasting model artificial neural networks nuclear emergency support system
下载PDF
Interval grey number sequence prediction by using non-homogenous exponential discrete grey forecasting model 被引量:19
2
作者 Naiming Xie Sifeng Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期96-102,共7页
This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on th... This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model. 展开更多
关键词 grey number grey system theory INTERVAL discrete grey forecasting model non-homogeneous exponential sequence
下载PDF
The Water-Bearing Numerical Model and Its Operational Forecasting Experiments PartII: The Operational Forecasting Experiments 被引量:19
3
作者 徐幼平 夏大庆 钱越英 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1998年第3期39-54,共16页
おhe water-bearing numerical model is undergone all round examinations during the operational forecasting experiments from 1994 to 1996. A lot of difficult problems arising from the model′s water-bearing are successf... おhe water-bearing numerical model is undergone all round examinations during the operational forecasting experiments from 1994 to 1996. A lot of difficult problems arising from the model′s water-bearing are successfully resolved in these experiments through developing and using a series of technical measures. The operational forecasting running of the water-bearing numerical model is realized stably and reliably, and satisfactory forecasts are obtained. 展开更多
关键词 Water-bearing Numerical forecasting model Operational forecasting experiment
下载PDF
A new grey forecasting model based on BP neural network and Markov chain 被引量:6
4
作者 李存斌 王恪铖 《Journal of Central South University of Technology》 EI 2007年第5期713-718,共6页
A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is eq... A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1, 1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(I, 1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1). 展开更多
关键词 grey forecasting model neural network Markov chain electricity demand forecasting
下载PDF
The Water-Bearing Numerical Model and Its Operational Forecasting Experiments Part I: The Water-Bearing Numerical Model 被引量:3
5
作者 夏大庆 徐幼平 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1998年第2期88-90,92-99,共11页
In first paper of articles, the physical and calculating schemes of the water-bearing numerical model are described. The model is developed by bearing all species of hydrometeors in a conventional numerical model in ... In first paper of articles, the physical and calculating schemes of the water-bearing numerical model are described. The model is developed by bearing all species of hydrometeors in a conventional numerical model in which the dynamic framework of hydrostatic equilibrium is taken. The main contributions are: the mixing ratios of all species of hydrometeors are added as the prognostic variables of model, the prognostic equations of these hydrometeors are introduced, the cloud physical framework is specially designed, some technical measures are used to resolve a series of physical, mathematical and computational problems arising from water-bearing; and so on. The various problems (in such aspects as the designs of physical and calculating schemes and the composition of computational programme) which are exposed in feasibility test, in sensibility test, and especially in operational forecasting experiments are successfully resolved using a lot of technical measures having been developed from researches and tests. Finally, the operational forecasting running of the water-bearing numerical model and its forecasting system is realized stably and reliably, and the fine forecasts are obtained. All of these mentioned above will be described in second paper. 展开更多
关键词 Water-Bearing Numerical forecasting model Cloud Physical Framework Calculating Scheme
下载PDF
A STUDY OF THE INFLUENCE OF MICROPHYSICAL PROCESSES ON TYPHOON NIDA(2016) USING A NEW DOUBLE-MOMENT MICROPHYSICS SCHEME IN THE WEATHER RESEARCH AND FORECASTING MODEL 被引量:5
6
作者 LI Zhe ZHANG Yu-tao +2 位作者 LIU Qi-jun FU Shi-zuo MA Zhan-shan 《Journal of Tropical Meteorology》 SCIE 2018年第2期123-130,共8页
The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Lium... The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Liuma microphysics scheme are compared with observations and those simulated with a commonly-used microphysics scheme(WSM6). Results show that using different microphysics schemes does not significantly alter the track of the typhoon but does significantly affect the intensity and the cloud structure of the typhoon. Results also show that the vertical distribution of cloud hydrometeors and the horizontal distribution of peripheral rainband are affected by the microphysics scheme. The mixing ratios of rain water and graupel correlate highly with the vertical velocity component and equivalent potential temperature at the typhoon eye-wall region. According to the simulation with WSM 6 scheme,it is likely that the very low typhoon central pressure results from the positive feedback between hydrometeors and typhoon intensity. As the ice-phase hydrometeors are mostly graupel in the Liuma microphysics scheme, further improvement in this aspect is required. 展开更多
关键词 Liuma microphysics scheme typhoon intensity cloud microphysics typhoon structure Weather Research and forecasting model
下载PDF
STUDY ON GREY FORECASTING MODEL OF COPPER EXTRACTION RATE WITH BIOLEACHING OF PRIMARY SULFIDE ORE 被引量:2
7
作者 A.X. Wu Y. Xi +2 位作者 B.H. Yang X.S. Chen H.C. Jiang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第2期117-128,共12页
A model GM (grey model) (1,1) for forecasting the rate of copper extraction during the bioleaching of primary sulphide ore was established on the basis of the mathematical theory and the modeling process of grey s... A model GM (grey model) (1,1) for forecasting the rate of copper extraction during the bioleaching of primary sulphide ore was established on the basis of the mathematical theory and the modeling process of grey system theory. It was used for forecasting the rate of copper extraction from the primary sulfide ore during a laboratory microbial column leaching experiment. The precision of the forecasted results were examined and modified via "posterior variance examination". The results show that the forecasted values coincide with the experimental values. GM (1,1) model has high forecast accuracy; and it is suitable for simulation control and prediction analysis of the original data series of the processes that have grey characteristics, such as mining, metallurgical and mineral processing, etc. The leaching rate of such copper sulphide ore is low. The grey forecasting result indicates that the rate of copper extraction is approximately 20% even after leaching for six months. 展开更多
关键词 primary copper sulfide ore BIOLEACHING extraction rate grey theory forecasting model
下载PDF
New Thought of Meteorological Forecasting and Warning Models of Geological Disasters in Loess Plateau of North Shaanxi
8
作者 高维英 李明 +1 位作者 杜继稳 王雁林 《Meteorological and Environmental Research》 CAS 2010年第8期12-16,共5页
The study established daily comprehensive precipitation equations and calculated respective critical daily comprehensive precipitation value of loess-collapse disasters and landslide disasters by dint of the geologica... The study established daily comprehensive precipitation equations and calculated respective critical daily comprehensive precipitation value of loess-collapse disasters and landslide disasters by dint of the geological disasters and corresponding precipitation data in 47 years.Considering geological disaster risk divisions,precipitation influence coefficient and daily comprehensive precipitation,hourly rolling daily-forecasting and hourly warning fine and no-gap models on the base of high temporal and spatial resolution rainfall data of automatic meteorological station were developed.Through the verifying of combination of dynamical forecasting model and warning model,the results showed that it can improve efficiency of forecast and have good response at the same time. 展开更多
关键词 Loess Plateau of North Shaanxi Geological disasters Daily comprehensive precipitation forecasting and warning models China
下载PDF
The Application of a Grey Markov Model to Forecasting Annual Maximum Water Levels at Hydrological Stations 被引量:12
9
作者 DONG Sheng CHI Kun +1 位作者 ZHANG Qiyi ZHANG Xiangdong 《Journal of Ocean University of China》 SCIE CAS 2012年第1期13-17,共5页
Compared with traditional real-time forecasting,this paper proposes a Grey Markov Model(GMM) to forecast the maximum water levels at hydrological stations in the estuary area.The GMM combines the Grey System and Marko... Compared with traditional real-time forecasting,this paper proposes a Grey Markov Model(GMM) to forecast the maximum water levels at hydrological stations in the estuary area.The GMM combines the Grey System and Markov theory into a higher precision model.The GMM takes advantage of the Grey System to predict the trend values and uses the Markov theory to forecast fluctuation values,and thus gives forecast results involving two aspects of information.The procedure for forecasting annul maximum water levels with the GMM contains five main steps:1) establish the GM(1,1) model based on the data series;2) estimate the trend values;3) establish a Markov Model based on relative error series;4) modify the relative errors caused in step 2,and then obtain the relative errors of the second order estimation;5) compare the results with measured data and estimate the accuracy.The historical water level records(from 1960 to 1992) at Yuqiao Hydrological Station in the estuary area of the Haihe River near Tianjin,China are utilized to calibrate and verify the proposed model according to the above steps.Every 25 years' data are regarded as a hydro-sequence.Eight groups of simulated results show reasonable agreement between the predicted values and the measured data.The GMM is also applied to the 10 other hydrological stations in the same estuary.The forecast results for all of the hydrological stations are good or acceptable.The feasibility and effectiveness of this new forecasting model have been proved in this paper. 展开更多
关键词 Grey Markov model forecasting estuary disaster prevention maximum water level
下载PDF
Application of Seasonal Auto-regressive Integrated Moving Average Model in Forecasting the Incidence of Hand-foot-mouth Disease in Wuhan,China 被引量:16
10
作者 彭颖 余滨 +3 位作者 汪鹏 孔德广 陈邦华 杨小兵 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2017年第6期842-848,共7页
Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful ... Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly. 展开更多
关键词 hand-foot-mouth disease forecast surveillance modeling auto-regressive integrated moving average(ARIMA)
下载PDF
Application of neural network model coupling with the partial least-squares method for forecasting watre yield of mine 被引量:2
11
作者 陈南祥 曹连海 黄强 《Journal of Coal Science & Engineering(China)》 2005年第1期40-43,共4页
Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, co... Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting. 展开更多
关键词 water yield of mine partial least square method neural network forecasting model
下载PDF
A hybrid model for numerical wave forecasting and its implementation-Ⅰ.The wind wave model 被引量:14
12
作者 Wen Shengchang (S.C. Wen)1, Zhang Dacuo, Chen Bohai and Guo Peifang Institute of Physical Oceanography, Ocean University of Qingdao (Formerly, Shandong College of Oceanography), Qingdao, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1989年第1期1-14,共14页
The authors make an endeavor to explain why a new hybrid wave model is here proposed when several such models have already been in operation and the so- called third generation wave modej is proving attractive. This p... The authors make an endeavor to explain why a new hybrid wave model is here proposed when several such models have already been in operation and the so- called third generation wave modej is proving attractive. This part of the paper is devoted to the wind wave model. Both deep and shallow water models have been developed, the former being actually a special case of the latter when water depth is great. The deep water model is exceptionally simple in form. Significant wave height is the only prognostic variable. In comparison with the usual methods to compute the energy input and dissipations empirically or by 'tuning', the proposed model has the merit that the effects of all source terms are combined into one term which is computed through empirical growth relations for significant waves, these relations being, relatively speaking, easier and more reliable to obtain than those for the source terms in the spectral energy balance equation. The discrete part of the model and the implementation of the model as a whole will be discussed in the second part of the present paper. 展开更多
关键词 WAVE A hybrid model for numerical wave forecasting and its implementation The wind wave model
下载PDF
A hybrid model for short-term rainstorm forecasting based on a back-propagation neural network and synoptic diagnosis 被引量:1
13
作者 Guolu Gao Yang Li +2 位作者 Jiaqi Li Xueyun Zhou Ziqin Zhou 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第5期13-18,共6页
Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network... Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features. 展开更多
关键词 RAINSTORM Short-term prediction method Back-propagation neural network Hybrid forecast model
下载PDF
A Hybrid Handover Forecasting Mechanism Based on Fuzzy Forecasting Model in Cellular Networks 被引量:1
14
作者 Hua Qu Yanpeng Zhang +2 位作者 Jihong Zhao Gongye Ren Weipeng Wang 《China Communications》 SCIE CSCD 2018年第6期84-97,共14页
As the increasing demand for mobile communications and the shrinking of the coverage of cells, handover mechanism will play an important role in future wireless networks to provide users with seamless mobile communica... As the increasing demand for mobile communications and the shrinking of the coverage of cells, handover mechanism will play an important role in future wireless networks to provide users with seamless mobile communication services. In order to guarantee the user experience, the handover decision should be made timely and reasonably. To achieve this goal, this paper presents a hybrid handover forecasting mechanism, which contains long-term and short-term forecasting models. The proposed mechanism could cooperate with the standard mechanisms, and improve the performance of standard handover decision mechanisms. Since most of the parameters involved are imprecise, fuzzy forecasting model is applied for dealing with predictions of them. The numerical results indicate that the mechanism could significantly decrease the rate of ping-pong handover and the rate of handover failure. 展开更多
关键词 handover forecasting mechanism fuzzy forecasting model long-term forecasting model short-term forecasting model
下载PDF
Multi-factor high-order intuitionistic fuzzy timeseries forecasting model 被引量:1
15
作者 Ya'nan Wang Yingjie Lei +1 位作者 Yang Lei Xiaoshi Fan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期1054-1062,共9页
Fuzzy sets theory cannot describe the neutrality degreeof data, which has largely limited the objectivity of fuzzy time seriesin uncertain data forecasting. With this regard, a multi-factor highorderintuitionistic fuz... Fuzzy sets theory cannot describe the neutrality degreeof data, which has largely limited the objectivity of fuzzy time seriesin uncertain data forecasting. With this regard, a multi-factor highorderintuitionistic fuzzy time series forecasting model is built. Inthe new model, a fuzzy clustering algorithm is used to get unequalintervals, and a more objective technique for ascertaining membershipand non-membership functions of the intuitionistic fuzzy setis proposed. On these bases, forecast rules based on multidimensionalintuitionistic fuzzy modus ponens inference are established.Finally, contrast experiments on the daily mean temperature ofBeijing are carried out, which show that the novel model has aclear advantage of improving the forecast accuracy. 展开更多
关键词 multi-factor high-order intuitionistic fuzzy time series forecasting model intuitionistic fuzzy inference.
下载PDF
Comparative Study of Volatility Forecasting Models: The Case of Malaysia, Indonesia, Hong Kong and Japan Stock Markets 被引量:1
16
《Economics World》 2017年第4期299-310,共12页
This paper aims to investigate the effectiveness of four volatility forecasting models, i.e. Exponential Weighted Moving Average (EWMA), Autoregressive Integrated Moving Average (ARIMA) and Generalized Auto-Regres... This paper aims to investigate the effectiveness of four volatility forecasting models, i.e. Exponential Weighted Moving Average (EWMA), Autoregressive Integrated Moving Average (ARIMA) and Generalized Auto-Regressive Conditional Heteroscedastic (GARCH), in four stock markets Indonesia, Malaysia, Japan and Hong Kong. Using monthly closing stock index prices collected from 1 st January 1998 to 31 st December 2015 for the four selected countries, results obtained confirm that volatility in developed markets is not necessarily always lower than the volatility in emerging markets. Among all the three models, GARCH (1, l) model is found to be the best forecasting model for stock markets in Malaysia, Indonesia, and Japan, while EWMA model is found to be the best forecasting model for Hong Kong stock market. The outperformance of GARCH (1, 1) found supports again what is found in Minkah (2007). 展开更多
关键词 volatility forecasting models GARCH (1 1) EWMA ARIMA effectiveness emerging countries
下载PDF
A Methodological Study on Using Weather Research and Forecasting(WRF) Model Outputs to Drive a One-Dimensional Cloud Model 被引量:1
17
作者 JIN Ling Fanyou KONG +1 位作者 LEI Hengchi HU Zhaoxia 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第1期230-240,共11页
A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale ... A new method for driving a One-Dimensional Stratiform Cold (1DSC) cloud model with Weather Research and Fore casting (WRF) model outputs was developed by conducting numerical experiments for a typical large-scale stratiform rainfall event that took place on 4-5 July 2004 in Changchun, China. Sensitivity test results suggested that, with hydrometeor pro files extracted from the WRF outputs as the initial input, and with continuous updating of soundings and vertical velocities (including downdraft) derived from the WRF model, the new WRF-driven 1DSC modeling system (WRF-1DSC) was able to successfully reproduce both the generation and dissipation processes of the precipitation event. The simulated rainfall intensity showed a time-lag behind that observed, which could have been caused by simulation errors of soundings, vertical velocities and hydrometeor profiles in the WRF output. Taking into consideration the simulated and observed movement path of the precipitation system, a nearby grid point was found to possess more accurate environmental fields in terms of their similarity to those observed in Changchun Station. Using profiles from this nearby grid point, WRF-1DSC was able to repro duce a realistic precipitation pattern. This study demonstrates that 1D cloud-seeding models do indeed have the potential to predict realistic precipitation patterns when properly driven by accurate atmospheric profiles derived from a regional short range forecasting system, This opens a novel and important approach to developing an ensemble-based rain enhancement prediction and operation system under a probabilistic framework concept. 展开更多
关键词 cloud-seeding model Weather Research and forecasting (WRF) model rain enhancement
下载PDF
A hybrid model for numerical wave forecasting and its implementation-Ⅱ .The discrete part and implementation of the model 被引量:3
18
作者 Zhang Dacuo, Wu Zengmao, Jiang Decai, Wang Wei, Chen Bohai, Tai Weitao, Wen Shengchang,Xu Qichun and Guo Peifang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1992年第2期157-178,共22页
In the first part of the present paper we have explained why we manage to formulate another wave prediction model when so many of them, including the so-called third generation model, have already been in use. The win... In the first part of the present paper we have explained why we manage to formulate another wave prediction model when so many of them, including the so-called third generation model, have already been in use. The wind-wave part of the proposed model has also been given. Now we proceed to discuss the swell part,the implementation of the model as a prediction method,mumerical experiments done with ideal wind fields and hindcasts made in the Bohai Sea,in the neighboring seas adjacent to China and in the Northwest Pacific. 展开更多
关键词 WAVE The discrete part and implementation of the model A hybrid model for numerical wave forecasting and its implementation
下载PDF
Forecasting Emergency Paediatric Asthma Hospital Admissions in Trinidad and Tobago: Development of a Local Model Incorporating the Interactions of Airborne Dust and Pollen Concentrations with Meteorological Parameters and a Time-Lag Factor 被引量:1
19
作者 Marissa Gowrie John Agard +1 位作者 Gregor Barclay Azad Mohammed 《Open Journal of Air Pollution》 2016年第4期109-126,共18页
Respiratory diseases such as asthma and rhinitis are multifaceted disorders which are exacerbated by various factors including: gender, age, diet, genetic background, biological materials, allergens (pollen and spores... Respiratory diseases such as asthma and rhinitis are multifaceted disorders which are exacerbated by various factors including: gender, age, diet, genetic background, biological materials, allergens (pollen and spores), pollutants, meteorological conditions and dust particles. It is hypothesized that, the number of valid physician diagnosed cases of paediatric asthma, which has resulted in emergency room visits in Trinidad can be expressed as a function of the magnitude of pollen counts, particulate matter (PM10), and selected meteorological parameters. These parameters were used to develop a 7-day predictive model for paediatric asthma admittance. The data showed no obvious, strong correlations between paediatric asthma admissions and dust concentrations, and paediatric asthma admissions and pollen concentrations, when considered in isolation or in a linear fashion. However, using polynomial regression analysis, which looked at combinations of interactions, a strong 7-day predictive model for paediatric asthma admissions, was developed. The model was tested against actual data collated during the study period and showed a strong correlation (R<sup>2</sup> = 0.85) between the regression model and the actual admissions data. 展开更多
关键词 POLLEN ASTHMA PAEDIATRIC Saharan Dust Asthma Forecast model Trinidad and Tobago
下载PDF
Wavelet Decomposition Impacts on Traditional Forecasting Time Series Models
20
作者 W.A.Shaikh S.F.Shah +1 位作者 S.M.Pandhiani M.A.Solangi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第3期1517-1532,共16页
This investigative study is focused on the impact of wavelet on traditional forecasting time-series models,which significantly shows the usage of wavelet algorithms.Wavelet Decomposition(WD)algorithm has been combined... This investigative study is focused on the impact of wavelet on traditional forecasting time-series models,which significantly shows the usage of wavelet algorithms.Wavelet Decomposition(WD)algorithm has been combined with various traditional forecasting time-series models,such as Least Square Support Vector Machine(LSSVM),Artificial Neural Network(ANN)and Multivariate Adaptive Regression Splines(MARS)and their effects are examined in terms of the statistical estimations.The WD has been used as a mathematical application in traditional forecast modelling to collect periodically measured parameters,which has yielded tremendous constructive outcomes.Further,it is observed that the wavelet combined models are classy compared to the various time series models in terms of performance basis.Therefore,combining wavelet forecasting models has yielded much better results. 展开更多
关键词 IMPACT wavelet decomposition COMBINED traditional forecasting models statistical analysis
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部