Detecting hate speech automatically in social media forensics has emerged as a highly challenging task due tothe complex nature of language used in such platforms. Currently, several methods exist for classifying hate...Detecting hate speech automatically in social media forensics has emerged as a highly challenging task due tothe complex nature of language used in such platforms. Currently, several methods exist for classifying hatespeech, but they still suffer from ambiguity when differentiating between hateful and offensive content and theyalso lack accuracy. The work suggested in this paper uses a combination of the Whale Optimization Algorithm(WOA) and Particle Swarm Optimization (PSO) to adjust the weights of two Multi-Layer Perceptron (MLPs)for neutrosophic sets classification. During the training process of the MLP, the WOA is employed to exploreand determine the optimal set of weights. The PSO algorithm adjusts the weights to optimize the performanceof the MLP as fine-tuning. Additionally, in this approach, two separate MLP models are employed. One MLPis dedicated to predicting degrees of truth membership, while the other MLP focuses on predicting degrees offalse membership. The difference between these memberships quantifies uncertainty, indicating the degree ofindeterminacy in predictions. The experimental results indicate the superior performance of our model comparedto previous work when evaluated on the Davidson dataset.展开更多
The AGCU X Plus STR system is a newly developed multiplex PCR kit that detects 32 X-chromosomal STR loci simultaneously.These are DXS6807,DXS9895,linkage group 1(DXS10148,DXS10135,DXS8378),DXS9902,DXS6795,DXS6810,DXS1...The AGCU X Plus STR system is a newly developed multiplex PCR kit that detects 32 X-chromosomal STR loci simultaneously.These are DXS6807,DXS9895,linkage group 1(DXS10148,DXS10135,DXS8378),DXS9902,DXS6795,DXS6810,DXS10159,DXS10162,DXS10164,DXS7132,linkage group 2(DXS10079,DXS10074,DXS10075),DXS981,DXS6800,DXS6803,DXS6809,DXS6789,DXS7424,DXS101,DXS7133,GATA172D05,GATA165B12,linkage group 3(DXS10103,HPRTB,DXS10101),GATA31E08 and linkage group 4(DXS8377,DXS10134,DXS7423).A major advantage of this kit is that it takes into account linkage between loci,in addition to detecting more X-STR loci.In order to evaluate the forensic application of 32 X-STR fl uorescence amplifi cation system,PCR settings,sensitivity,species specifi city,stability,DNA mixtures,concordance,stutter,sizing precision,and population genetics investigation were evaluated according to the Scientific Working Group on DNA Analysis Methods(SWGDAM)developmental validation guidelines.The study showed that the genotyping results of each locus were signifi cantly accurate when the DNA template was at least 62.5 pg.Complete profi les were obtained for the 1∶1 and 1∶3 combinations.A total of 209 unrelated individuals from Southern Chinese Han community,consisting of 84 females and 125 males,were selected for population studies,and 285 allele profi les were detected from 32 X-STR loci.The polymorphism information content(PIC)ranged from 0.2721 in DXS6800,to 0.9105 in DXS10135,with an average of 0.6798.DXS10135(PIC=0.9105)was the most polymorphic locus,with discrimination power(DP)of 0.9164 and 0.9871 for the male and female.The cumulative PD_(F),PD_(M),MEC_(trio) and MEC_(duo) valu es were all greater than 0.999999999.There were 78 different DXS10103-HPRTB-DXS10101 haplotypes among the 125 males,and the haplotype diversity was 0.9810.There was no signifi cant difference in the cumulative PD_(F),PD_(M),MEC_(trio) and MEC_(duo) values whether considering linkage or not.In summary,the new X-STR multiplex typing system is effective and reliable,which can be useful in human genetic analysis and kinship testing as a potent complement to autosomal STR typing.展开更多
Authorship verification is a crucial task in digital forensic investigations,where it is often necessary to determine whether a specific individual wrote a particular piece of text.Convolutional Neural Networks(CNNs)h...Authorship verification is a crucial task in digital forensic investigations,where it is often necessary to determine whether a specific individual wrote a particular piece of text.Convolutional Neural Networks(CNNs)have shown promise in solving this problem,but their performance highly depends on the choice of hyperparameters.In this paper,we explore the effectiveness of hyperparameter tuning in improving the performance of CNNs for authorship verification.We conduct experiments using a Hyper Tuned CNN model with three popular optimization algorithms:Adaptive Moment Estimation(ADAM),StochasticGradientDescent(SGD),andRoot Mean Squared Propagation(RMSPROP).The model is trained and tested on a dataset of text samples collected from various authors,and the performance is evaluated using accuracy,precision,recall,and F1 score.We compare the performance of the three optimization algorithms and demonstrate the effectiveness of hyperparameter tuning in improving the accuracy of the CNN model.Our results show that the Hyper Tuned CNN model with ADAM Optimizer achieves the highest accuracy of up to 90%.Furthermore,we demonstrate that hyperparameter tuning can help achieve significant performance improvements,even using a relatively simple model architecture like CNNs.Our findings suggest that the choice of the optimization algorithm is a crucial factor in the performance of CNNs for authorship verification and that hyperparameter tuning can be an effective way to optimize this choice.Overall,this paper demonstrates the effectiveness of hyperparameter tuning in improving the performance of CNNs for authorship verification in digital forensic investigations.Our findings have important implications for developing accurate and reliable authorship verification systems,which are crucial for various applications in digital forensics,such as identifying the author of anonymous threatening messages or detecting cases of plagiarism.展开更多
Automated and autonomous decisions of image classification systems have essential applicability in this modern age even.Image-based decisions are commonly taken through explicit or auto-feature engineering of images.I...Automated and autonomous decisions of image classification systems have essential applicability in this modern age even.Image-based decisions are commonly taken through explicit or auto-feature engineering of images.In forensic radiology,auto decisions based on images significantly affect the automation of various tasks.This study aims to assist forensic radiology in its biological profile estimation when only bones are left.A benchmarked dataset Radiology Society of North America(RSNA)has been used for research and experiments.Additionally,a locally developed dataset has also been used for research and experiments to cross-validate the results.A Convolutional Neural Network(CNN)-based model named computer vision and image processing-net(CVIP-Net)has been proposed to learn and classify image features.Experiments have also been performed on state-of-the-art pertained models,which are alex_net,inceptionv_3,google_net,Residual Network(resnet)_50,and Visual Geometry Group(VGG)-19.Experiments proved that the proposed CNN model is more accurate than other models when panoramic dental x-ray images are used to identify age and gender.The specially designed CNN-based achieved results in terms of standard evaluation measures including accuracy(98.90%),specificity(97.99%),sensitivity(99.34%),and Area under the Curve(AUC)-value(0.99)on the locally developed dataset to detect age.The classification rates of the proposed model for gender estimation were 99.57%,97.67%,98.99%,and 0.98,achieved in terms of accuracy,specificity,sensitivity,and AUC-value,respectively,on the local dataset.The classification rates of the proposed model for age estimation were 96.80%,96.80%,97.03%,and 0.99 achieved in terms of accuracy,specificity,sensitivity,and AUC-value,respectively,on the RSNA dataset.展开更多
As a subversive concept,the metaverse has recently attracted widespread attention around the world and has set off a wave of enthusiasm in academic,industrial,and investment circles.However,while the metaverse brings ...As a subversive concept,the metaverse has recently attracted widespread attention around the world and has set off a wave of enthusiasm in academic,industrial,and investment circles.However,while the metaverse brings unprecedented opportunities for transformation to human society,it also contains related risks.Metaverse is a digital living space with information infrastructure,interoperability system,content production system,and value settlement system as the underlying structure in which the inner core is to connect real residents through applications and identities.Through social incentives and governance rules,the metaverse reflects the digital migration of human society.This article will conduct an in-depth analysis of the metaverse from the perspective of electronic data forensics.First,from the perspective of Internet development,the background and development process of the metaverse is discussed.By systematically elaborating on the concept and connotation of the metaverse,this paper summarizes the different views of current practitioners,experts,and scholars on the metaverse.Secondly,from the perspective of metaverse security,the social risk and crime risks of the metaverse are discussed.Then the importance of metaverse forensics is raised.Third,from the perspective of blockchain,smart wearable devices,and virtual reality devices,the objects and characteristics of metaverse forensics have been studied in depth.Taking smart wearable devices as an example,this paper gives the relevant experimental process of smart bracelet forensics.Finally,many challenges faced by metaverse forensics are summarized by us which provide readers with some exploratory guidance.展开更多
Objective In this study,we aimed to assess the characteristics of the P3 component from an event-related potential(ERP)that was induced by visual acuity(VA)processing.Furthermore,we sought to provide electrophysiologi...Objective In this study,we aimed to assess the characteristics of the P3 component from an event-related potential(ERP)that was induced by visual acuity(VA)processing.Furthermore,we sought to provide electrophysiological evidence for the objective evaluation of VA.Methods We recruited 32 participants with myopia-related ametropia.They reported no other ocular diseases and had an uncorrected VA of 4.0 in both eyes.We used the block letter“E”at different visual angles and orientations as the graphic stimuli.The oddball paradigm,consisting of 4 modules,was used for ERP analysis.The standard stimuli of each module were identical,with a visual angle of 1°15′.The visual angles of the target stimuli were 1°15′,55′,24′,and 15′.The VA test was performed on each eye separately for all participants,and all characteristics of the P3 component were analyzed.Results There was no significant difference in the P3 peak letencies between the target stimulation angle 1°15′group and the 55′group,or between the target stimulation angle 24′group and the 15′group.There was a significant difference in the P3 peak letencies between the target stimulation angle 1°15′group and the 24′group as well as the 15′group.There was a significant difference in the P3 peak letencies between the target stimulation angle 55′group and the 24′group as well as the 15′group.No significant differences were observed in the P3 amplitude between modules.Conclusion In the oddball paradigm,P3 elicitation indicated a cognitive response to the target stimuli.These data showed that the characteristics of P3 can be used as an objective evaluation of VA.展开更多
This paper presents dynamic-behavior comparisons and related forensic analyses of a submerged floating tunnel(SFT)between numerical simulation and physical experiment under regular and irregular waves.The experiments ...This paper presents dynamic-behavior comparisons and related forensic analyses of a submerged floating tunnel(SFT)between numerical simulation and physical experiment under regular and irregular waves.The experiments are conducted in the 3Dwave tank with 1:33.3 scale,and the corresponding coupled time-domain simulation tool is devised for comparison.The entire SFT systemconsists of a long concrete tunnel and 12 tubular aluminummooring lines.Two numerical simulation models,the Cummins equation with 3D potential theory including second-order wave-body interaction effects and the much simpler Morison-equation-based formula with the lumped-massbased line model,are designed and compared.Forensic analyses for mooring-line adjustments in the simulation are carried out in view of the best representation of the physical system.After that,the measured pre-tension distribution and systemstiffness of twelvemooring lines arewell reproduced in the numericalmodel.Subsequently,the dynamic responses and mooring tensions of the SFT are compared under regular and irregular waves.The measured and simulated results coincide reasonably well for both regular-and irregular-wave conditions.展开更多
Age estimation using forensics odontology is an important process in identifying victims in criminal or mass disaster cases.Traditionally,this process is done manually by human expert.However,the speed and accuracy ma...Age estimation using forensics odontology is an important process in identifying victims in criminal or mass disaster cases.Traditionally,this process is done manually by human expert.However,the speed and accuracy may vary depending on the expertise level of the human expert and other human factors such as level of fatigue and attentiveness.To improve the recognition speed and consistency,researchers have proposed automated age estimation using deep learning techniques such as Convolutional Neural Network(CNN).CNN requires many training images to obtain high percentage of recognition accuracy.Unfortunately,it is very difficult to get large number of samples of dental images for training the CNN due to the need to comply to privacy acts.A promising solution to this problem is a technique called Generative Adversarial Network(GAN).GAN is a technique that can generate synthetic images that has similar statistics as the training set.A variation of GAN called Conditional GAN(CGAN)enables the generation of the synthetic images to be controlled more precisely such that only the specified type of images will be generated.This paper proposes a CGAN for generating new dental images to increase the number of images available for training a CNN model to perform age estimation.We also propose a pseudolabelling technique to label the generated images with proper age and gender.We used the combination of real and generated images to trainDentalAge and Sex Net(DASNET),which is a CNN model for dental age estimation.Based on the experiment conducted,the accuracy,coefficient of determination(R2)and Absolute Error(AE)of DASNET have improved to 87%,0.85 and 1.18 years respectively as opposed to 74%,0.72 and 3.45 years when DASNET is trained using real,but smaller number of images.展开更多
Privacy preservation(PP)in Digital forensics(DF)is a conflicted and non-trivial issue.Existing solutions use the searchable encryption concept and,as a result,are not efficient and support only a keyword search.Moreov...Privacy preservation(PP)in Digital forensics(DF)is a conflicted and non-trivial issue.Existing solutions use the searchable encryption concept and,as a result,are not efficient and support only a keyword search.Moreover,the collected forensic data cannot be analyzed using existing well-known digital tools.This research paper first investigates the lawful requirements for PP in DF based on the organization for economic co-operation and development OECB)privacy guidelines.To have an efficient investigation process and meet the increased volume of data,the presented framework is designed based on the selective imaging concept and advanced encryption standard(AES).The proposed framework has two main modules,namely Selective Imaging Module(SIM)and Selective Analysis Module(SAM).The SIM and SAM modules are implemented based on advanced forensic format 4(AFF4)and SleuthKit open source forensics frameworks,respectively,and,accordingly,the proposed framework is evaluated in a forensically sound manner.The evaluation result is compared with other relevant works and,as a result,the proposed solution provides a privacy-preserving,efficient forensic imaging and analysis process while having also sufficient methods.Moreover,the AFF4 forensic image,produced by the SIM module,can be analyzed not only by SAM,but also by other well-known analysis tools available on the market.展开更多
Despite the extensive empirical literature relating to the Internet of Things (IoT), surprisingly few attempts have sought to establish the ways in which digital forensics can be applied to undertake detailed examinat...Despite the extensive empirical literature relating to the Internet of Things (IoT), surprisingly few attempts have sought to establish the ways in which digital forensics can be applied to undertake detailed examinations regarding IoT frameworks. The existing digital forensic applications have effectively held back efforts to align the IoT with digital forensic strategies. This is because the forensic applications are ill-suited to the highly complex IoT frameworks and would, therefore, struggle to amass, analyze and test the necessary evidence that would be required by a court. As such, there is a need to develop a suitable forensic framework to facilitate forensic investigations in IoT settings. Nor has considerable progress been made in terms of collecting and saving network and server logs from IoT settings to enable examinations. Consequently, this study sets out to develop and test the FB system which is a lightweight forensic framework capable of improving the scope of investigations in IoT environments. The FB system can organize the management of various IoT devices found in a smart apartment, all of which is controlled by the owner’s smart watch. This will help to perform useful functions, automate the decision-making process, and ensure that the system remains secure. A Java app is utilized to simulate the FB system, learning the user’s requirements and security expectations when installed and employing the MySQL server as a means of logging the communications of the various IoT devices.展开更多
This summary paper will discuss the concept of forensic evidence and evidence collection methods. Emphasis will be placed on the techniques used to collect forensically sound digital evidence for the purpose of introd...This summary paper will discuss the concept of forensic evidence and evidence collection methods. Emphasis will be placed on the techniques used to collect forensically sound digital evidence for the purpose of introduction to digital forensics. This discussion will thereafter result in identifying and categorizing the different types of digital forensics evidence and a clear procedure for how to collect forensically sound digital evidence. This paper will further discuss the creation of awareness and promote the idea that competent practice of computer forensics collection is important for admissibility in court.展开更多
文摘Detecting hate speech automatically in social media forensics has emerged as a highly challenging task due tothe complex nature of language used in such platforms. Currently, several methods exist for classifying hatespeech, but they still suffer from ambiguity when differentiating between hateful and offensive content and theyalso lack accuracy. The work suggested in this paper uses a combination of the Whale Optimization Algorithm(WOA) and Particle Swarm Optimization (PSO) to adjust the weights of two Multi-Layer Perceptron (MLPs)for neutrosophic sets classification. During the training process of the MLP, the WOA is employed to exploreand determine the optimal set of weights. The PSO algorithm adjusts the weights to optimize the performanceof the MLP as fine-tuning. Additionally, in this approach, two separate MLP models are employed. One MLPis dedicated to predicting degrees of truth membership, while the other MLP focuses on predicting degrees offalse membership. The difference between these memberships quantifies uncertainty, indicating the degree ofindeterminacy in predictions. The experimental results indicate the superior performance of our model comparedto previous work when evaluated on the Davidson dataset.
文摘The AGCU X Plus STR system is a newly developed multiplex PCR kit that detects 32 X-chromosomal STR loci simultaneously.These are DXS6807,DXS9895,linkage group 1(DXS10148,DXS10135,DXS8378),DXS9902,DXS6795,DXS6810,DXS10159,DXS10162,DXS10164,DXS7132,linkage group 2(DXS10079,DXS10074,DXS10075),DXS981,DXS6800,DXS6803,DXS6809,DXS6789,DXS7424,DXS101,DXS7133,GATA172D05,GATA165B12,linkage group 3(DXS10103,HPRTB,DXS10101),GATA31E08 and linkage group 4(DXS8377,DXS10134,DXS7423).A major advantage of this kit is that it takes into account linkage between loci,in addition to detecting more X-STR loci.In order to evaluate the forensic application of 32 X-STR fl uorescence amplifi cation system,PCR settings,sensitivity,species specifi city,stability,DNA mixtures,concordance,stutter,sizing precision,and population genetics investigation were evaluated according to the Scientific Working Group on DNA Analysis Methods(SWGDAM)developmental validation guidelines.The study showed that the genotyping results of each locus were signifi cantly accurate when the DNA template was at least 62.5 pg.Complete profi les were obtained for the 1∶1 and 1∶3 combinations.A total of 209 unrelated individuals from Southern Chinese Han community,consisting of 84 females and 125 males,were selected for population studies,and 285 allele profi les were detected from 32 X-STR loci.The polymorphism information content(PIC)ranged from 0.2721 in DXS6800,to 0.9105 in DXS10135,with an average of 0.6798.DXS10135(PIC=0.9105)was the most polymorphic locus,with discrimination power(DP)of 0.9164 and 0.9871 for the male and female.The cumulative PD_(F),PD_(M),MEC_(trio) and MEC_(duo) valu es were all greater than 0.999999999.There were 78 different DXS10103-HPRTB-DXS10101 haplotypes among the 125 males,and the haplotype diversity was 0.9810.There was no signifi cant difference in the cumulative PD_(F),PD_(M),MEC_(trio) and MEC_(duo) values whether considering linkage or not.In summary,the new X-STR multiplex typing system is effective and reliable,which can be useful in human genetic analysis and kinship testing as a potent complement to autosomal STR typing.
基金Prince Sultan University for funding this publication’s Article Process Charges(APC).
文摘Authorship verification is a crucial task in digital forensic investigations,where it is often necessary to determine whether a specific individual wrote a particular piece of text.Convolutional Neural Networks(CNNs)have shown promise in solving this problem,but their performance highly depends on the choice of hyperparameters.In this paper,we explore the effectiveness of hyperparameter tuning in improving the performance of CNNs for authorship verification.We conduct experiments using a Hyper Tuned CNN model with three popular optimization algorithms:Adaptive Moment Estimation(ADAM),StochasticGradientDescent(SGD),andRoot Mean Squared Propagation(RMSPROP).The model is trained and tested on a dataset of text samples collected from various authors,and the performance is evaluated using accuracy,precision,recall,and F1 score.We compare the performance of the three optimization algorithms and demonstrate the effectiveness of hyperparameter tuning in improving the accuracy of the CNN model.Our results show that the Hyper Tuned CNN model with ADAM Optimizer achieves the highest accuracy of up to 90%.Furthermore,we demonstrate that hyperparameter tuning can help achieve significant performance improvements,even using a relatively simple model architecture like CNNs.Our findings suggest that the choice of the optimization algorithm is a crucial factor in the performance of CNNs for authorship verification and that hyperparameter tuning can be an effective way to optimize this choice.Overall,this paper demonstrates the effectiveness of hyperparameter tuning in improving the performance of CNNs for authorship verification in digital forensic investigations.Our findings have important implications for developing accurate and reliable authorship verification systems,which are crucial for various applications in digital forensics,such as identifying the author of anonymous threatening messages or detecting cases of plagiarism.
文摘Automated and autonomous decisions of image classification systems have essential applicability in this modern age even.Image-based decisions are commonly taken through explicit or auto-feature engineering of images.In forensic radiology,auto decisions based on images significantly affect the automation of various tasks.This study aims to assist forensic radiology in its biological profile estimation when only bones are left.A benchmarked dataset Radiology Society of North America(RSNA)has been used for research and experiments.Additionally,a locally developed dataset has also been used for research and experiments to cross-validate the results.A Convolutional Neural Network(CNN)-based model named computer vision and image processing-net(CVIP-Net)has been proposed to learn and classify image features.Experiments have also been performed on state-of-the-art pertained models,which are alex_net,inceptionv_3,google_net,Residual Network(resnet)_50,and Visual Geometry Group(VGG)-19.Experiments proved that the proposed CNN model is more accurate than other models when panoramic dental x-ray images are used to identify age and gender.The specially designed CNN-based achieved results in terms of standard evaluation measures including accuracy(98.90%),specificity(97.99%),sensitivity(99.34%),and Area under the Curve(AUC)-value(0.99)on the locally developed dataset to detect age.The classification rates of the proposed model for gender estimation were 99.57%,97.67%,98.99%,and 0.98,achieved in terms of accuracy,specificity,sensitivity,and AUC-value,respectively,on the local dataset.The classification rates of the proposed model for age estimation were 96.80%,96.80%,97.03%,and 0.99 achieved in terms of accuracy,specificity,sensitivity,and AUC-value,respectively,on the RSNA dataset.
基金supported by 2021 Jiangsu Police Institute Scientific Research Project(2021SJYZK01)High-Level Introduction of Talent Scientific Research Start-Up Fund of Jiangsu Police Institute(JSPI19GKZL407)+2 种基金Jiangsu Provincial Department of Public Security Science and Technology Project(2021KX012)Open Project of Criminal Inspection Laboratory in Key Laboratories of Sichuan Provincial Universities(2023YB03)Major Project of Basic Science(Natural Science)Research in Higher Education Institutions in Jiangsu Province(2020232001),2023‘Jiangsu Science and Technology Think Tank Youth Talent Plan’.
文摘As a subversive concept,the metaverse has recently attracted widespread attention around the world and has set off a wave of enthusiasm in academic,industrial,and investment circles.However,while the metaverse brings unprecedented opportunities for transformation to human society,it also contains related risks.Metaverse is a digital living space with information infrastructure,interoperability system,content production system,and value settlement system as the underlying structure in which the inner core is to connect real residents through applications and identities.Through social incentives and governance rules,the metaverse reflects the digital migration of human society.This article will conduct an in-depth analysis of the metaverse from the perspective of electronic data forensics.First,from the perspective of Internet development,the background and development process of the metaverse is discussed.By systematically elaborating on the concept and connotation of the metaverse,this paper summarizes the different views of current practitioners,experts,and scholars on the metaverse.Secondly,from the perspective of metaverse security,the social risk and crime risks of the metaverse are discussed.Then the importance of metaverse forensics is raised.Third,from the perspective of blockchain,smart wearable devices,and virtual reality devices,the objects and characteristics of metaverse forensics have been studied in depth.Taking smart wearable devices as an example,this paper gives the relevant experimental process of smart bracelet forensics.Finally,many challenges faced by metaverse forensics are summarized by us which provide readers with some exploratory guidance.
基金This project was supported by the National Key Research and Development Program of China during the Thirteenth Five-Year Plan period(No.2016YFC0800701-4-2).
文摘Objective In this study,we aimed to assess the characteristics of the P3 component from an event-related potential(ERP)that was induced by visual acuity(VA)processing.Furthermore,we sought to provide electrophysiological evidence for the objective evaluation of VA.Methods We recruited 32 participants with myopia-related ametropia.They reported no other ocular diseases and had an uncorrected VA of 4.0 in both eyes.We used the block letter“E”at different visual angles and orientations as the graphic stimuli.The oddball paradigm,consisting of 4 modules,was used for ERP analysis.The standard stimuli of each module were identical,with a visual angle of 1°15′.The visual angles of the target stimuli were 1°15′,55′,24′,and 15′.The VA test was performed on each eye separately for all participants,and all characteristics of the P3 component were analyzed.Results There was no significant difference in the P3 peak letencies between the target stimulation angle 1°15′group and the 55′group,or between the target stimulation angle 24′group and the 15′group.There was a significant difference in the P3 peak letencies between the target stimulation angle 1°15′group and the 24′group as well as the 15′group.There was a significant difference in the P3 peak letencies between the target stimulation angle 55′group and the 24′group as well as the 15′group.No significant differences were observed in the P3 amplitude between modules.Conclusion In the oddball paradigm,P3 elicitation indicated a cognitive response to the target stimuli.These data showed that the characteristics of P3 can be used as an objective evaluation of VA.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)(No.2017R1A5A1014883).
文摘This paper presents dynamic-behavior comparisons and related forensic analyses of a submerged floating tunnel(SFT)between numerical simulation and physical experiment under regular and irregular waves.The experiments are conducted in the 3Dwave tank with 1:33.3 scale,and the corresponding coupled time-domain simulation tool is devised for comparison.The entire SFT systemconsists of a long concrete tunnel and 12 tubular aluminummooring lines.Two numerical simulation models,the Cummins equation with 3D potential theory including second-order wave-body interaction effects and the much simpler Morison-equation-based formula with the lumped-massbased line model,are designed and compared.Forensic analyses for mooring-line adjustments in the simulation are carried out in view of the best representation of the physical system.After that,the measured pre-tension distribution and systemstiffness of twelvemooring lines arewell reproduced in the numericalmodel.Subsequently,the dynamic responses and mooring tensions of the SFT are compared under regular and irregular waves.The measured and simulated results coincide reasonably well for both regular-and irregular-wave conditions.
文摘Age estimation using forensics odontology is an important process in identifying victims in criminal or mass disaster cases.Traditionally,this process is done manually by human expert.However,the speed and accuracy may vary depending on the expertise level of the human expert and other human factors such as level of fatigue and attentiveness.To improve the recognition speed and consistency,researchers have proposed automated age estimation using deep learning techniques such as Convolutional Neural Network(CNN).CNN requires many training images to obtain high percentage of recognition accuracy.Unfortunately,it is very difficult to get large number of samples of dental images for training the CNN due to the need to comply to privacy acts.A promising solution to this problem is a technique called Generative Adversarial Network(GAN).GAN is a technique that can generate synthetic images that has similar statistics as the training set.A variation of GAN called Conditional GAN(CGAN)enables the generation of the synthetic images to be controlled more precisely such that only the specified type of images will be generated.This paper proposes a CGAN for generating new dental images to increase the number of images available for training a CNN model to perform age estimation.We also propose a pseudolabelling technique to label the generated images with proper age and gender.We used the combination of real and generated images to trainDentalAge and Sex Net(DASNET),which is a CNN model for dental age estimation.Based on the experiment conducted,the accuracy,coefficient of determination(R2)and Absolute Error(AE)of DASNET have improved to 87%,0.85 and 1.18 years respectively as opposed to 74%,0.72 and 3.45 years when DASNET is trained using real,but smaller number of images.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no(RG-1441-531).
文摘Privacy preservation(PP)in Digital forensics(DF)is a conflicted and non-trivial issue.Existing solutions use the searchable encryption concept and,as a result,are not efficient and support only a keyword search.Moreover,the collected forensic data cannot be analyzed using existing well-known digital tools.This research paper first investigates the lawful requirements for PP in DF based on the organization for economic co-operation and development OECB)privacy guidelines.To have an efficient investigation process and meet the increased volume of data,the presented framework is designed based on the selective imaging concept and advanced encryption standard(AES).The proposed framework has two main modules,namely Selective Imaging Module(SIM)and Selective Analysis Module(SAM).The SIM and SAM modules are implemented based on advanced forensic format 4(AFF4)and SleuthKit open source forensics frameworks,respectively,and,accordingly,the proposed framework is evaluated in a forensically sound manner.The evaluation result is compared with other relevant works and,as a result,the proposed solution provides a privacy-preserving,efficient forensic imaging and analysis process while having also sufficient methods.Moreover,the AFF4 forensic image,produced by the SIM module,can be analyzed not only by SAM,but also by other well-known analysis tools available on the market.
文摘Despite the extensive empirical literature relating to the Internet of Things (IoT), surprisingly few attempts have sought to establish the ways in which digital forensics can be applied to undertake detailed examinations regarding IoT frameworks. The existing digital forensic applications have effectively held back efforts to align the IoT with digital forensic strategies. This is because the forensic applications are ill-suited to the highly complex IoT frameworks and would, therefore, struggle to amass, analyze and test the necessary evidence that would be required by a court. As such, there is a need to develop a suitable forensic framework to facilitate forensic investigations in IoT settings. Nor has considerable progress been made in terms of collecting and saving network and server logs from IoT settings to enable examinations. Consequently, this study sets out to develop and test the FB system which is a lightweight forensic framework capable of improving the scope of investigations in IoT environments. The FB system can organize the management of various IoT devices found in a smart apartment, all of which is controlled by the owner’s smart watch. This will help to perform useful functions, automate the decision-making process, and ensure that the system remains secure. A Java app is utilized to simulate the FB system, learning the user’s requirements and security expectations when installed and employing the MySQL server as a means of logging the communications of the various IoT devices.
文摘This summary paper will discuss the concept of forensic evidence and evidence collection methods. Emphasis will be placed on the techniques used to collect forensically sound digital evidence for the purpose of introduction to digital forensics. This discussion will thereafter result in identifying and categorizing the different types of digital forensics evidence and a clear procedure for how to collect forensically sound digital evidence. This paper will further discuss the creation of awareness and promote the idea that competent practice of computer forensics collection is important for admissibility in court.