期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Stand development patterns of forest cover types in the natural forests of northern Baekdudaegan in South Korea
1
作者 Ji Hong Kim Guangze Jin Sang Hoon Chung 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第2期381-390,共10页
The purpose of this study was to classify current forest cover types,and to investigate stand development patterns for natural forests in six areas in northern Baekdudaegan,South Korea.Twenty-eight independent forest ... The purpose of this study was to classify current forest cover types,and to investigate stand development patterns for natural forests in six areas in northern Baekdudaegan,South Korea.Twenty-eight independent forest communities were aggregated into eight forest cover types by species composition in the overstory of each forest community.The forest cover types were of mixed mesophytic,‘‘others’ ’ deciduous,Quercus mongolica dominant,Q.mongolica pure,Pinus densiflora–Q.mongolica,P.densiflora,Betula ermanii,and Q.mongolica–P.koraiensis.The ecological information was organized by importance value and species diversity for each forest type.Based on the correlation between species diversity index and the abundance of Q.mongolica plus P.densiflora for corresponding forest cover types,we compared the developmental process and approximate successional pathway between each cover type.The P.densiflora forest cover type changes into the P.densiflora–Q.mongolica cover type,followed by the Q.mongolica dominant cover type through continuous invasion of the oak trees.Furthermore,the Q.mongolica pure cover type would spread toward the Q.mongolica dominant cover type with a mixture of various deciduous tree species.The Q.mongolica dominant cover type progresses through the other deciduous cover types to the mixed mesophytic cover type with diversified composition and structure.On the mid to lower slopes,with loamy soils and good moisture conditions,various deciduous forest types should progress,by ecological succession,toward the mixed mesophytic cover type without any further disturbance. 展开更多
关键词 Baekdudaegan forest cover type Species composition Species diversity Stand development PATTERNS
下载PDF
Assessing impact of climate change on forest cover type shifts in Western Himalayan Eco-region 被引量:1
2
作者 P.K.Joshi Asha Rawat +1 位作者 Sheena Narula Vinay Sinha 《Journal of Forestry Research》 CAS CSCD 2012年第1期75-80,共6页
Climate is a critical factor affecting forest ecosystems and their capacity to produce goods and services. Effects of climate change on forests depend on ecosystem-specific factors including dimensions of climate (te... Climate is a critical factor affecting forest ecosystems and their capacity to produce goods and services. Effects of climate change on forests depend on ecosystem-specific factors including dimensions of climate (temperature, precipitation, drought, wind etc.). Available infor- mation is not sufficient to support a quantitative assessment of the eco- logical, social and economic consequences. The present study assessed shifts in forest cover types of Western Himalayan Eco-region (700-4 500 m). 100 randomly selected samples (75 for training and 25 for testing the model), genetic algorithm of rule set parameters and climatic envelopes were used to assess the distribution of five prominent forest cover types (Temperate evergreen, Tropical semi-evergreen, Temperate conifer, Sub- tropical conifer, and Tropical moist deciduous forests). Modelling was conducted for four different scenarios, current scenario, changed precipi- tation (8% increase), changed temperature (1.07℃ increase), and both changed temperature and precipitation. On increasing precipitation a downward shift in the temperate evergreen and tropical semi-evergreen was observed, while sub-tropical conifer and tropical moist-deciduous forests showed a slight upward shift and temperate conifer showed 'no shift. On increasing temperatm'e, an upward shift in all forest types was observed except sub-tropical conifer forests without significant changes. When both temperature and precipitation were changed, the actual dis- tribution was maintained and slight upward shift was observed in all the forest types except sub-tropical conifer. It is important to understand the likely impacts of the projected climate change on the forest ecosystems, so that better management and conservation strategies can be adopted for the biodiversity and forest dependent community. Knowledge of impact mechanisms also enables identification and mitigation of some of the conditions that increase vulnerability to climate change in the forest sector. 展开更多
关键词 Climate change forest cover types SHIFT western Himalaya genetic algorithm
下载PDF
Effects of forest cover type and ratio changes on runoff and its components
3
作者 Bingbing Ding Yonge Zhang +5 位作者 Xinxiao Yu Guodong Jia Yousheng Wang Yusong Wang Pengfei Zheng Zedong Li 《International Soil and Water Conservation Research》 SCIE CSCD 2022年第3期445-456,共12页
Changes in forest cover can affect not only the total runoff from a watershed,but also the runoff components(e.g.,surface runoff,interflow,groundwater flow).In this study,based on the WetSpa model simulation method an... Changes in forest cover can affect not only the total runoff from a watershed,but also the runoff components(e.g.,surface runoff,interflow,groundwater flow).In this study,based on the WetSpa model simulation method and the recursive digital filtering(RDF)method,the Banchengzi watershed in the mountainous region of Beijing,China,was selected to investigate how changes in forest cover type and cover percentage affect total runoff,surface runoff,interflow,and groundwater flow through scenario settings.Our results show that the difference between the WetSpa model and the RDF method for separating runoff components is small,with only 4.7%and 0.4%difference between the calibration and validation periods.Total runoff in different forest types followed the order shrub forest>coniferous forest>mixed forest>broadleaf forest.Regarding runoff components,the proportions of baseflow(sum of interflow and groundwater flow)to total runoff were 61.1%and 60.8%for broadleaf and mixed forests,which was significantly higher than those of 53.0%and 43.1%for coniferous and shrub forests.However,the proportion of shrub forest baseflow was high in wet years,and that of broadleaf forest baseflow was high in normal and dry years.The proportions of interflow and groundwater flow from various forest cover types to total runoff continued to increase with increasing forest cover rate.Our results have important implications for the implementation of afforestation projects and forest conservation programs,contributing to water resource regulation and ecosystem protection in watersheds. 展开更多
关键词 forest cover types forest cover ratios WetSpa Runoff separation Runoff components
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部