We selected a dark coniferous forest ecosystem of Gongga Mountain in the upper reaches of the Yangtze River as our research area to study the preferential flow and solute preferential transport by adding the tracers K...We selected a dark coniferous forest ecosystem of Gongga Mountain in the upper reaches of the Yangtze River as our research area to study the preferential flow and solute preferential transport by adding the tracers KNO3 and KBr to the self-made soil column equipment in different ways to examine density and volume changes of inflows and outflows of a mass input (impulse input) and a stable, well-distributed input (step input)). The results showed that this dark coniferous forest ecosystem of Gongga Mountain is a typical area of preferential flow and solute preferential transport, a process that can be classified into five parts. A great amount of solute was transported at high speed as the result of preferential flow in the soil and caused the density of the solute in both deep water and in groundwater to rise rapidly, which definitely increased pollution in the deep soil layer.展开更多
Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of ...Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of live and dead biomass.Yet,little is known about the interactions between biomass stocks,tree genus diversity and structure across a temperate montane primary forest.Here,we investigated the relationship between tree structure(variability in basal area and tree size),genus-level diversity(abundance,tree diversity)and biomass stocks in temperate primary mountain forests across Central and Eastern Europe.We used inventory data from726 permanent sample plots from mixed beech and spruce across the Carpathian Mountains.We used nonlinear regression to analyse the spatial variability in forest biomass,structure,and genus-level diversity and how they interact with plot-level tree age,disturbances,temperature and altitude.We found that the combined effects of genus and structural indices were important for addressing the variability in biomass across different spatial scales.Local processes in disturbance regimes and uneven tree age support forest hete rogeneity and the accumulation of live and dead biomass through the natural regeneration,growth and decay of the forest ecosystem.Structural complexities in basal area index,supporte d by genus-level abundance,positively influence total biomass stocks,which was modulated by tree age and disturbances.Spruce forests showed higher tree density and basal area than mixed beech forests,though mixed beech still contributes significantly to biomass across landscapes.Forest heterogeneity was strongly influenced by complexities in forest composition(tree genus diversity,structure).We addressed the importance of primary forests as stable carbon stores,achieved through structure and diversity.Safeguarding such ecosystems is critical for ensuring the stability of the primary forest,carbon store and biodiversity into the future.展开更多
Vegetation types alter soil ecosystems by changing soil fauna community activities and soil physi-cal-chemical properties.However,it is unclear how tree species(natural forest,native and exotic tree plantations)promot...Vegetation types alter soil ecosystems by changing soil fauna community activities and soil physi-cal-chemical properties.However,it is unclear how tree species(natural forest,native and exotic tree plantations)promote changes in the soil ecosystem,and if these changes alter functional groups of soil fauna and ecosystem services.To determine the effects of five decades of old-field veg-etation on soil ecosystems in the Brazilian Atlantic Forest,field sampling of three ecosystems(exotic tree species Pinus elliottii Engelm.plantation,endangered tree species Arau-caria angustifolia(Bertol.)Kuntze plantation,and a natural ecosystem)were carried out,as well using bait-lamina tests and bioassays with collembolans,earthworms and seeds of Lactuca sativa L.Field sampling evaluated the soil fauna community and soil physical-chemical properties.The bait-lamina test in situ was carried out for 14-days to deter-mine fauna feeding activity,and the bioassays evaluated the reproduction of Folsomia candida,the avoidance of Eisenia andrei,and germination of L.sativa in the soil from each ecosystem.The results are:(1)vegetation type altered the soil fauna community composition;(2)soil fauna feeding was reduced in the plantations compared to the natural eco-system;(3)a physical barrier was created by recalcitrant litter that compromised fauna community structure and seed bank germination in situ;and,(4)changes in soil physical-chemical properties promoted decomposers.展开更多
Background: Experimental manipulations of tree diversity have often found overyielding in mixed-species plantations. While most experiments are still in the early stages of stand development, the impacts of tree diver...Background: Experimental manipulations of tree diversity have often found overyielding in mixed-species plantations. While most experiments are still in the early stages of stand development, the impacts of tree diversity are expected to accumulate over time. Here, I present findings from a 31-year-old tree diversity experiment(as of2018) in Japan.Results: I find that the net diversity effect on stand biomass increased linearly through time. The species mixture achieved 64% greater biomass than the average monoculture biomass 31 years after planting. The complementarity effect was positive and increased exponentially with time. The selection effect was negative and decreased exponentially with time. In the early stages(≤ 3 years), the positive complementarity effect was explained by enhanced growths of early-and mid-successional species in the mixture. Later on(≥ 15 years), it was explained by their increased survival rates owing to vertical spatial partitioning — i.e. alleviation of self-thinning via canopy stratification. The negative selection effect resulted from suppressed growths of late-successional species in the bottom layer.Conclusions: The experiment provides pioneering evidence that the positive impacts of diversity-driven spatial partitioning on forest biomass can accumulate over multiple decades. The results indicate that forest biomass production and carbon sequestration can be enhanced by multispecies afforestation strategies.展开更多
The study of tree mortality and recruitment contributes to the understanding of forest dynamics and, at the same time, supplies a baseline to evaluate the impact of human activities. The study site is a moist semi-dec...The study of tree mortality and recruitment contributes to the understanding of forest dynamics and, at the same time, supplies a baseline to evaluate the impact of human activities. The study site is a moist semi-deciduous forest located in the Caparo Forest Reserve, Venezuela. Tree data were obtained from permanent plots established in unlogged and logged stands. Successive measurements were taken during a 15 yr period. Tree species mortality and recruitment was analyzed for individuals with diameter at breast height (d)〉-- 10 cm. The species were classified according to their shade tolerance (low or intolerant, intermediate and high or tolerant) and the maximum height (hmax) (small〈15 m, medium: 15-30 m and large 〉30 m). Palms were considered as a separate group. In the unlogged stands 307 and 274 trees ha-1 were found at the beginning and final time of the monitoring period, respectively. These trees were classified into 55 and 48 species, respectively. Among them predominate species from the shade intermediate tolerant and large size group and palms. Similarly, in the logged forest 155 and 207 trees ha^-1 were found, whereas 59 and 60 tree species were recorded. Only four species were found with 〉10 individuals had, the majority of these species belong to the functional group of shade intolerant medium size species, which may be partly explained by forest recovering after selective logging. In the unlogged stands the mean annual rate of tree mortality is 2.61% and the highest values corresponded to shade intermediate tolerant and intolerant small size species. Tree density was not significantly correlated to tree mortality in both forest conditions (logged and unlogged). The recruitment rate in the unlogged forest was 1.33%, with the lowest values obtained for the same groups with highest mortality; whereas in the logged stands reached 2.58%, with the highest value for the shade tolerant small size species, followed by shade intermediate tolerant large size species. A significant difference was found between forest conditions for tree recruitment rates (H=0.0649). In contrast, the correlation between tree mortality and recruitment was higher for logged (r=0.5988) than unlogged stands (r=0.4904) but not significant.展开更多
Background:Forests perform various important ecosystem functions that contribute to ecosystem services.In many parts of the world,forest management has shifted from a focus on timber production to multi-purpose forest...Background:Forests perform various important ecosystem functions that contribute to ecosystem services.In many parts of the world,forest management has shifted from a focus on timber production to multi-purpose forestry,combining timber production with the supply of other forest ecosystem services.However,it is unclear which forest types provide which ecosystem services and to what extent forests primarily managed for timber already supply multiple ecosystem services.Based on a comprehensive dataset collected across 150 forest plots in three regions differing in management intensity and species composition,we develop models to predict the potential supply of 13 ecosystem services.We use those models to assess the level of multifunctionality of managed forests at the national level using national forest inventory data.Results:Looking at the potential supply of ecosystem services,we found trade-offs(e.g.between both bark beetle control or dung decomposition and both productivity or soil carbon stocks)as well as synergies(e.g.for temperature regulation,carbon storage and culturally interesting plants)across the 53 most dominant forest types in Germany.No single forest type provided all ecosystem services equally.Some ecosystem services showed comparable levels across forest types(e.g.decomposition or richness of saprotrophs),while others varied strongly,depending on forest structural attributes(e.g.phosphorous availability or cover of edible plants)or tree species composition(e.g.potential nitrification activity).Variability in potential supply of ecosystem services was only to a lesser extent driven by environmental conditions.However,the geographic variation in ecosystem function supply across Germany was closely linked with the distribution of main tree species.Conclusions:Our results show that forest multifunctionality is limited to subsets of ecosystem services.The importance of tree species composition highlights that a lack of multifunctionality at the stand level can be compensated by managing forests at the landscape level,when stands of complementary forest types are combined.These results imply that multi-purpose forestry should be based on a variety of forest types requiring coordinated planning across larger spatial scales.展开更多
Background:Multi-purpose use of forests in a sustainable way forces a recognition of how introduction of alien woody species in forests with different land use histories affect native plants other than trees.Lingonber...Background:Multi-purpose use of forests in a sustainable way forces a recognition of how introduction of alien woody species in forests with different land use histories affect native plants other than trees.Lingonberry Vaccinium vitis-idaea is an important understory component of temperate and boreal forests and provider of valuable non-wood forest products.Here we studied effects of land use changes and introduction of Northern red oak Quercus rubra on lingonberry in mesic Scots pine forests(in central Poland).We measured lingonberry cover,height of shoots,biomass of stems and leaves,and fruit productivity.Shoots were collected within 200 research plots located in recent and ancient Scots pine forests,with and without Q.rubra.Results:We found that V.vitis-idaea reached lower cover,aboveground biomass and fruit production in recent than ancient forests and in forests with than without Q.rubra.The fruit production in recent pine forest was only 2%of that reported in ancient pine forest,and V.vitis-idaea did not reproduce generatively in forests with Q.rubra.Biomass and carbon sequestration of V.vitis-idaea in forests with alien(invasive)trees decreased by 75%compared to ancient pine forest.Effects were also clear at the individual shoot level–in less suitable conditions we found taller heights and higher biomass allocation into stems than foliage.Biomass allocation in fruiting and non-fruiting shoots in pine forests was also different–less of the dry biomass of fruiting shoots was allocated to leaves than to stems.Conclusions:In the age of high interest in ecosystem services and discussions about usage of alien tree species as alternatives in forest management,our results clearly indicate disruption of ecosystem services provided by V.vitisidaea in the presence of Q.rubra.Lingonberry benefited from the continuity of forest land use,however,regardless of land-use legacy,alien tree introduction led to decline in abundance of species crucial for ecosystem functioning.Therefore,to maintain valuable native species and for conservation of ecosystem services delivery,we suggest limiting the introduction of Q.rubra in areas with abundant V.vitis-idaea,especially in forests with continuous forest land-use history.展开更多
The Oak Ridge National Laboratory (ORNL) is the largest and most diverse energy, research, and development institution within the Department of Energy (DOE) system in the United States. As such, the site endures const...The Oak Ridge National Laboratory (ORNL) is the largest and most diverse energy, research, and development institution within the Department of Energy (DOE) system in the United States. As such, the site endures constant land development that creates rigorous growing conditions for urban vegetation. Natural resource managers at ORNL recognize that trees are an integral component of the landscape and are interested in characterizing the urban forest and their associated ecosystem services benefits. We evaluated the urban forest structure, quantified ecosystem services and benefits, and estimated economic value of resources using i-Tree Eco at ORNL. While this assessment captured over 1100 landscape trees, the ORNL Natural Resources Management for landscape vegetation can be expanded to include unmanaged landscapes, e.g. riparian areas, greenspace, and other vegetative attributes to increase ecosystem services benefits. Assigning a monetary value to urban forest benefits help to inform decisions about urban forest management, ideally on cost-benefit analysis.展开更多
The riparian (tugai) forest ecosystems of Central Asia are a biodiversity hotspot with unique many trees and shrubs. Intense human pressure and global warming have caused habitat destruction in Zerafshan State Nationa...The riparian (tugai) forest ecosystems of Central Asia are a biodiversity hotspot with unique many trees and shrubs. Intense human pressure and global warming have caused habitat destruction in Zerafshan State National park and it’s 23.5 ha. There grow more than 300 higher plants. We analysed the wild flora and the remains of the species diversity that previously existed on the site of the forestry enterprise, the modern biodiversity of trees and shrubs in the described territory are represented by 52 species from among representatives of 21 plant families. These monitoring and results indicated that some tree species might in the near future become extinct in the wild. We therefore recommend that the local people be encouraged to stop using these trees.展开更多
Sustainable urban forest management is still an evolving concept, particularly as it pertains to a sustainable supply of ecosystem benefits and management planning. Urban forestry maintains a greater human dimension c...Sustainable urban forest management is still an evolving concept, particularly as it pertains to a sustainable supply of ecosystem benefits and management planning. Urban forestry maintains a greater human dimension component than traditional timber-oriented rural forestry because urban trees grow in city centers and neighborhoods, supplying critical ecosystem benefits to the population centers. The overall goal of this study was to evaluate the relationship of urban forest stand structure and its temporal dynamics with the sustainable supply of ecosystem benefits in university environments. Individual tree data were collected from a completed inventory, while the i-Tree Eco model was used to generate ecosystem benefits data from the Clemson urban forest. The cumulative-benefits supply curve had an inverted J-shaped curve, but the average supply curve had a negative slope against the species richness. Likewise, individual tree variables total height, DBH, leaf area, and crown height strongly correlated with the total ecosystem services supply. Based on the temporal supply trends, the study area trees were broadly segmented into three groups: establishment, growth, and legacy, with 65%, 31%, and 4% frequency distribution, respectively. Urban forest managers need to identify forest management goals and preferred ecosystem benefits among the urban communities to guide the required forest structure and dynamics to ensure a sustainable and functioning urban forest.展开更多
基金the financial support provided by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20060022006)National Natural Sciences Foundation of China (Grant No. 30471379)
文摘We selected a dark coniferous forest ecosystem of Gongga Mountain in the upper reaches of the Yangtze River as our research area to study the preferential flow and solute preferential transport by adding the tracers KNO3 and KBr to the self-made soil column equipment in different ways to examine density and volume changes of inflows and outflows of a mass input (impulse input) and a stable, well-distributed input (step input)). The results showed that this dark coniferous forest ecosystem of Gongga Mountain is a typical area of preferential flow and solute preferential transport, a process that can be classified into five parts. A great amount of solute was transported at high speed as the result of preferential flow in the soil and caused the density of the solute in both deep water and in groundwater to rise rapidly, which definitely increased pollution in the deep soil layer.
基金funded by the Czech University of Life Sciences Prague(Internal Grant Agency:A_03_22-43110/1312/3101)the Czech Science(GACR 21-27454S)。
文摘Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of live and dead biomass.Yet,little is known about the interactions between biomass stocks,tree genus diversity and structure across a temperate montane primary forest.Here,we investigated the relationship between tree structure(variability in basal area and tree size),genus-level diversity(abundance,tree diversity)and biomass stocks in temperate primary mountain forests across Central and Eastern Europe.We used inventory data from726 permanent sample plots from mixed beech and spruce across the Carpathian Mountains.We used nonlinear regression to analyse the spatial variability in forest biomass,structure,and genus-level diversity and how they interact with plot-level tree age,disturbances,temperature and altitude.We found that the combined effects of genus and structural indices were important for addressing the variability in biomass across different spatial scales.Local processes in disturbance regimes and uneven tree age support forest hete rogeneity and the accumulation of live and dead biomass through the natural regeneration,growth and decay of the forest ecosystem.Structural complexities in basal area index,supporte d by genus-level abundance,positively influence total biomass stocks,which was modulated by tree age and disturbances.Spruce forests showed higher tree density and basal area than mixed beech forests,though mixed beech still contributes significantly to biomass across landscapes.Forest heterogeneity was strongly influenced by complexities in forest composition(tree genus diversity,structure).We addressed the importance of primary forests as stable carbon stores,achieved through structure and diversity.Safeguarding such ecosystems is critical for ensuring the stability of the primary forest,carbon store and biodiversity into the future.
文摘Vegetation types alter soil ecosystems by changing soil fauna community activities and soil physi-cal-chemical properties.However,it is unclear how tree species(natural forest,native and exotic tree plantations)promote changes in the soil ecosystem,and if these changes alter functional groups of soil fauna and ecosystem services.To determine the effects of five decades of old-field veg-etation on soil ecosystems in the Brazilian Atlantic Forest,field sampling of three ecosystems(exotic tree species Pinus elliottii Engelm.plantation,endangered tree species Arau-caria angustifolia(Bertol.)Kuntze plantation,and a natural ecosystem)were carried out,as well using bait-lamina tests and bioassays with collembolans,earthworms and seeds of Lactuca sativa L.Field sampling evaluated the soil fauna community and soil physical-chemical properties.The bait-lamina test in situ was carried out for 14-days to deter-mine fauna feeding activity,and the bioassays evaluated the reproduction of Folsomia candida,the avoidance of Eisenia andrei,and germination of L.sativa in the soil from each ecosystem.The results are:(1)vegetation type altered the soil fauna community composition;(2)soil fauna feeding was reduced in the plantations compared to the natural eco-system;(3)a physical barrier was created by recalcitrant litter that compromised fauna community structure and seed bank germination in situ;and,(4)changes in soil physical-chemical properties promoted decomposers.
基金a Grant-in-Aid for Young Scientists B (No. 16 K18715)a JSPS Overseas Research Fellowship (No. 201860500) from the Japan Society for the Promotion of Science。
文摘Background: Experimental manipulations of tree diversity have often found overyielding in mixed-species plantations. While most experiments are still in the early stages of stand development, the impacts of tree diversity are expected to accumulate over time. Here, I present findings from a 31-year-old tree diversity experiment(as of2018) in Japan.Results: I find that the net diversity effect on stand biomass increased linearly through time. The species mixture achieved 64% greater biomass than the average monoculture biomass 31 years after planting. The complementarity effect was positive and increased exponentially with time. The selection effect was negative and decreased exponentially with time. In the early stages(≤ 3 years), the positive complementarity effect was explained by enhanced growths of early-and mid-successional species in the mixture. Later on(≥ 15 years), it was explained by their increased survival rates owing to vertical spatial partitioning — i.e. alleviation of self-thinning via canopy stratification. The negative selection effect resulted from suppressed growths of late-successional species in the bottom layer.Conclusions: The experiment provides pioneering evidence that the positive impacts of diversity-driven spatial partitioning on forest biomass can accumulate over multiple decades. The results indicate that forest biomass production and carbon sequestration can be enhanced by multispecies afforestation strategies.
文摘The study of tree mortality and recruitment contributes to the understanding of forest dynamics and, at the same time, supplies a baseline to evaluate the impact of human activities. The study site is a moist semi-deciduous forest located in the Caparo Forest Reserve, Venezuela. Tree data were obtained from permanent plots established in unlogged and logged stands. Successive measurements were taken during a 15 yr period. Tree species mortality and recruitment was analyzed for individuals with diameter at breast height (d)〉-- 10 cm. The species were classified according to their shade tolerance (low or intolerant, intermediate and high or tolerant) and the maximum height (hmax) (small〈15 m, medium: 15-30 m and large 〉30 m). Palms were considered as a separate group. In the unlogged stands 307 and 274 trees ha-1 were found at the beginning and final time of the monitoring period, respectively. These trees were classified into 55 and 48 species, respectively. Among them predominate species from the shade intermediate tolerant and large size group and palms. Similarly, in the logged forest 155 and 207 trees ha^-1 were found, whereas 59 and 60 tree species were recorded. Only four species were found with 〉10 individuals had, the majority of these species belong to the functional group of shade intolerant medium size species, which may be partly explained by forest recovering after selective logging. In the unlogged stands the mean annual rate of tree mortality is 2.61% and the highest values corresponded to shade intermediate tolerant and intolerant small size species. Tree density was not significantly correlated to tree mortality in both forest conditions (logged and unlogged). The recruitment rate in the unlogged forest was 1.33%, with the lowest values obtained for the same groups with highest mortality; whereas in the logged stands reached 2.58%, with the highest value for the shade tolerant small size species, followed by shade intermediate tolerant large size species. A significant difference was found between forest conditions for tree recruitment rates (H=0.0649). In contrast, the correlation between tree mortality and recruitment was higher for logged (r=0.5988) than unlogged stands (r=0.4904) but not significant.
基金funded through the project‘Bio Holz’(grant no.01LC1323A)in the funding program‘Research for the Implementation of the National Biodiversity Strategy(F&U NBS)’by the German Federal Ministry for Education and Research(BMBF)and the German Federal Agency for Nature Conservation(Bf N)with funds provided by the German Federal Ministry for the Environment,Nature Conservation,Building and Nuclear Safety(BMUB)supported by the DFG Priority Program 1374‘Infrastructure-Biodiversity-Exploratories’。
文摘Background:Forests perform various important ecosystem functions that contribute to ecosystem services.In many parts of the world,forest management has shifted from a focus on timber production to multi-purpose forestry,combining timber production with the supply of other forest ecosystem services.However,it is unclear which forest types provide which ecosystem services and to what extent forests primarily managed for timber already supply multiple ecosystem services.Based on a comprehensive dataset collected across 150 forest plots in three regions differing in management intensity and species composition,we develop models to predict the potential supply of 13 ecosystem services.We use those models to assess the level of multifunctionality of managed forests at the national level using national forest inventory data.Results:Looking at the potential supply of ecosystem services,we found trade-offs(e.g.between both bark beetle control or dung decomposition and both productivity or soil carbon stocks)as well as synergies(e.g.for temperature regulation,carbon storage and culturally interesting plants)across the 53 most dominant forest types in Germany.No single forest type provided all ecosystem services equally.Some ecosystem services showed comparable levels across forest types(e.g.decomposition or richness of saprotrophs),while others varied strongly,depending on forest structural attributes(e.g.phosphorous availability or cover of edible plants)or tree species composition(e.g.potential nitrification activity).Variability in potential supply of ecosystem services was only to a lesser extent driven by environmental conditions.However,the geographic variation in ecosystem function supply across Germany was closely linked with the distribution of main tree species.Conclusions:Our results show that forest multifunctionality is limited to subsets of ecosystem services.The importance of tree species composition highlights that a lack of multifunctionality at the stand level can be compensated by managing forests at the landscape level,when stands of complementary forest types are combined.These results imply that multi-purpose forestry should be based on a variety of forest types requiring coordinated planning across larger spatial scales.
基金financially supported by the Faculty of Biology and Environmental Protection,University of Lodz and the Institute of Dendrology,Polish Academy of Sciences,Kórnik,Poland。
文摘Background:Multi-purpose use of forests in a sustainable way forces a recognition of how introduction of alien woody species in forests with different land use histories affect native plants other than trees.Lingonberry Vaccinium vitis-idaea is an important understory component of temperate and boreal forests and provider of valuable non-wood forest products.Here we studied effects of land use changes and introduction of Northern red oak Quercus rubra on lingonberry in mesic Scots pine forests(in central Poland).We measured lingonberry cover,height of shoots,biomass of stems and leaves,and fruit productivity.Shoots were collected within 200 research plots located in recent and ancient Scots pine forests,with and without Q.rubra.Results:We found that V.vitis-idaea reached lower cover,aboveground biomass and fruit production in recent than ancient forests and in forests with than without Q.rubra.The fruit production in recent pine forest was only 2%of that reported in ancient pine forest,and V.vitis-idaea did not reproduce generatively in forests with Q.rubra.Biomass and carbon sequestration of V.vitis-idaea in forests with alien(invasive)trees decreased by 75%compared to ancient pine forest.Effects were also clear at the individual shoot level–in less suitable conditions we found taller heights and higher biomass allocation into stems than foliage.Biomass allocation in fruiting and non-fruiting shoots in pine forests was also different–less of the dry biomass of fruiting shoots was allocated to leaves than to stems.Conclusions:In the age of high interest in ecosystem services and discussions about usage of alien tree species as alternatives in forest management,our results clearly indicate disruption of ecosystem services provided by V.vitisidaea in the presence of Q.rubra.Lingonberry benefited from the continuity of forest land use,however,regardless of land-use legacy,alien tree introduction led to decline in abundance of species crucial for ecosystem functioning.Therefore,to maintain valuable native species and for conservation of ecosystem services delivery,we suggest limiting the introduction of Q.rubra in areas with abundant V.vitis-idaea,especially in forests with continuous forest land-use history.
文摘The Oak Ridge National Laboratory (ORNL) is the largest and most diverse energy, research, and development institution within the Department of Energy (DOE) system in the United States. As such, the site endures constant land development that creates rigorous growing conditions for urban vegetation. Natural resource managers at ORNL recognize that trees are an integral component of the landscape and are interested in characterizing the urban forest and their associated ecosystem services benefits. We evaluated the urban forest structure, quantified ecosystem services and benefits, and estimated economic value of resources using i-Tree Eco at ORNL. While this assessment captured over 1100 landscape trees, the ORNL Natural Resources Management for landscape vegetation can be expanded to include unmanaged landscapes, e.g. riparian areas, greenspace, and other vegetative attributes to increase ecosystem services benefits. Assigning a monetary value to urban forest benefits help to inform decisions about urban forest management, ideally on cost-benefit analysis.
文摘The riparian (tugai) forest ecosystems of Central Asia are a biodiversity hotspot with unique many trees and shrubs. Intense human pressure and global warming have caused habitat destruction in Zerafshan State National park and it’s 23.5 ha. There grow more than 300 higher plants. We analysed the wild flora and the remains of the species diversity that previously existed on the site of the forestry enterprise, the modern biodiversity of trees and shrubs in the described territory are represented by 52 species from among representatives of 21 plant families. These monitoring and results indicated that some tree species might in the near future become extinct in the wild. We therefore recommend that the local people be encouraged to stop using these trees.
文摘Sustainable urban forest management is still an evolving concept, particularly as it pertains to a sustainable supply of ecosystem benefits and management planning. Urban forestry maintains a greater human dimension component than traditional timber-oriented rural forestry because urban trees grow in city centers and neighborhoods, supplying critical ecosystem benefits to the population centers. The overall goal of this study was to evaluate the relationship of urban forest stand structure and its temporal dynamics with the sustainable supply of ecosystem benefits in university environments. Individual tree data were collected from a completed inventory, while the i-Tree Eco model was used to generate ecosystem benefits data from the Clemson urban forest. The cumulative-benefits supply curve had an inverted J-shaped curve, but the average supply curve had a negative slope against the species richness. Likewise, individual tree variables total height, DBH, leaf area, and crown height strongly correlated with the total ecosystem services supply. Based on the temporal supply trends, the study area trees were broadly segmented into three groups: establishment, growth, and legacy, with 65%, 31%, and 4% frequency distribution, respectively. Urban forest managers need to identify forest management goals and preferred ecosystem benefits among the urban communities to guide the required forest structure and dynamics to ensure a sustainable and functioning urban forest.