By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant ...By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant diseases based on particle swarm and neural network algorithm was established. The test results showed that the construction of early-warning model is effective and feasible, which will provide a via- ble model structure to establish the effective early-warning platform.展开更多
The primary goal of Chinese agricultural development is to guarantee national food security and supply of major agricultural products. Hence, the scientiifc work on agricultural monitoring and early warning as wel as ...The primary goal of Chinese agricultural development is to guarantee national food security and supply of major agricultural products. Hence, the scientiifc work on agricultural monitoring and early warning as wel as agricultural outlook must be strengthened. In this study, we develop the China Agricultural Monitoring and Early-warning System (CAMES) on the basis of a comparative study of domestic and international agricultural outlook models. The system is a dynamic and multi-market partial equilibrium model that integrates biological mechanisms with economic mechanisms. This system, which includes 11 categories of 953 kinds of agricultural products, could dynamical y project agricultural market supply and demand, assess food security, and conduct scenario analysis at different spatial levels, time scale levels, and macro-micro levels. Based on the CAMES, the production, consumption, and trade of the major agricultural products in China over the next decade are projected. The fol owing conclusions are drawn:i) The production of major agricultural products wil continue to grow steadily, mainly because of the increase in yield. i ) The growth of agricultural consumption wil be slightly higher than that of agricultural production. Meanwhile, a high self-sufifciency rate is expected for cereals such as rice, wheat, and maize, with the rate being stable at around 97%. i i) Agricultural trade wil continue to thrive. The growth of soybean and milk im-ports wil slow down, but the growth of traditional agricultural exports such as vegetables and fruits is expected to continue.展开更多
The mechanical parameters of materials in a dam body and dam foundation tend to change when dams are reinforced in aging processes.It is important to use an early-warning index to reflect the safety status of dams,par...The mechanical parameters of materials in a dam body and dam foundation tend to change when dams are reinforced in aging processes.It is important to use an early-warning index to reflect the safety status of dams,particularly of heightened projects in the impoundment period.Herein,a new method for monitoring the safety status of heightened dams is proposed based on the deformation monitoring data of a dam structure,a statistical model,and finite-element numerical simulation.First,a fast optimization inversion method for estimation of dam mechanical parameters was developed,which used the water pressure component extracted from a statistical model,an improved inversion objective function,and a genetic optimization iterative algorithm.Then,a finite element model of a heightened concrete gravity dam was established,and the deformation behavior of the dam with rising water levels in the impoundment period was simulated.Subsequently,mechanical parameters of aged dam parts were calculated using the fast optimization inversion method with simulated deformation and the water pressure deformation component obtained by the statistical model under the same conditions of water pressure change.Finally,a new earlywarning index of dam deformation was constructed by means of the forward-simulated deformation and other components of the statistical model.The early-warning index is useful for forecasting dam deformation under different water levels,especially high water levels.展开更多
The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so t...The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so that the data could be processed at different priority levels in C language. Two different data processing models, one with priority and the other without priority, were built based on queuing theory. Their theoretical formulas were determined via a M/M/I model in order to calculate average occupation time of each measuring point in an early-warning program. We validated the model with the gas early-warning system of the Huaibei Coalmine Group Corp. The results indicate that the average occupation time for gas data processing by using the queuing system model with priority is nearly 1/30 of that of the model without priority.展开更多
By analyzing the heavy fog data in Chizhou City in recent 50 years(1959-2007),the general rules of meteorological elements variations were found when the heavy fog happened.The meteorological elements included the tem...By analyzing the heavy fog data in Chizhou City in recent 50 years(1959-2007),the general rules of meteorological elements variations were found when the heavy fog happened.The meteorological elements included the temperature,humidity,wind direction,wind speed,air pressure and so on.The conceptual models of high-altitude and ground situation were established when the heavy fog happened in Chizhou City.Based on considering sufficiently the special geographical environment in Chizhou City,we found the key factors which affected the local heavy fog via the relative analyses.By using the statistical forecast methods which included the second-level judgment method and regression method of event probability and so on,the forecast mode equation of heavy fog was established.Moreover,the objective forecast system of heavy fog in Chizhou City was also manufactured.It provided the basis and platform which could be referred for the heavy fog forecast,service and the release of early-warning signal.展开更多
The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not suc...The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not successful in forecasting the movement behaviors of faults.In the present study,a new mechanical model of fault activity,considering the shear strength on the fault plane and the influence of the resistance force,is established based on the occurrence condition of earthquake.A remote real-time monitoring system is correspondingly developed to obtain the changes in mechanical components within fault.Taking into consideration the local geological conditions and the history of fault activity in Zhangjiakou of China,an active fault exposed in the region of Zhangjiakou is selected to be directly monitored by the real-time monitoring technique.A thorough investigation on local fault structures results in the selection of two suitable sites for monitoring potential active tectonic movements of Zhangjiakou fault.Two monitoring curves of shear strength,recorded during a monitoring period of 6 months,turn out to be steady,which indicates that the potential seismic activities hardly occur in the adjacent region in the near future.This monitoring technique can be used for early-warning prediction of the movement of active fault,and can help to further gain an insight into the interaction between fault activity and relevant mechanisms.展开更多
Risk early-warning of natural disasters is a very intricate non-deterministic prediction, and it was difficult to resolve the conflicts and incompatibility of the risk structure. Risk early-warning factors of natural ...Risk early-warning of natural disasters is a very intricate non-deterministic prediction, and it was difficult to resolve the conflicts and incompatibility of the risk structure. Risk early-warning factors of natural disasters were differentiated into essential attributes and external characters, and its workflow mode was established on risk early-warning structure with integrated Entropy and DEA model, whose steps were put forward. On the basis of standard risk early-warning DEA model of natural disasters, weight coefficient of risk early-warning factors was determined with Information Entropy method, which improved standard risk early-warning DEA model with non-Archimedean infinitesimal, and established risk early-warning preference DEA model based on integrated entropy weight and DEA Model. Finally, model was applied into landslide risk early-warning case in earthquake-damaged emergency process on slope engineering, which exemplified the outcome could reflect more risk information than the method of standard DEA model, and reflected the rationality, feasibility, and impersonality, revealing its better ability on comprehensive safety and structure risk.展开更多
The period economic fluctuation is vital for an enterprise to exist and further develop, it directly affect the enterprise financial health. So, it is significant to build up financial early-warning index and measure ...The period economic fluctuation is vital for an enterprise to exist and further develop, it directly affect the enterprise financial health. So, it is significant to build up financial early-warning index and measure the warning condition that the enterprise faces and take the effective measures to eliminate. We criticize Altman’sZ calculating model and build up some new indexes for enterprise financial early-warning condition measuring and making sound decision.展开更多
Over the course of human history, influenza pandemics have been seen as major disasters, so studies on the influenza virus have become an important issue for many experts and scholars. Comprehensive research has been ...Over the course of human history, influenza pandemics have been seen as major disasters, so studies on the influenza virus have become an important issue for many experts and scholars. Comprehensive research has been performed over the years on the biological properties, chemical characteristics, external environmental factors and other aspects of the virus, and some results have been achieved. Based on the chaos game representation walk model, this paper uses the time series analysis method to study the DNA sequences of the influenza virus from 1913 to 2010, and works out the early-warning signals indicator value for the outbreak of an influenza pandemic. The variances in the CCR wall〈 sequences for the pandemic years (or + -1 to 2 years) are significantly higher than those for the adjacent years, while those in the non-pandemic years are usually smaller. In this way we can provide an influenza early-warning mechanism so that people can take precautions and be well prepared prior to a pandemic.展开更多
According to the principle of the eruption of debris flows, the new torrent classification techniques are brought forward. The torrent there can be divided into 4 types such as the debris flow torrent with high destru...According to the principle of the eruption of debris flows, the new torrent classification techniques are brought forward. The torrent there can be divided into 4 types such as the debris flow torrent with high destructive strength, the debris flow torrent, high sand-carrying capacity flush flood torrent and common flush flood by the techniques. In this paper, the classification indices system and the quantitative rating methods are presented. Based on torrent classification, debris flow torrent hazard zone mapping techniques by which the debris flow disaster early-warning object can be ascertained accurately are identified. The key techniques of building the debris flow disaster neural network (NN) real time forecasting model are given detailed explanations in this paper, including the determination of neural node at the input layer, the output layer and the implicit layer, the construction of knowledge source and the initial weight value and so on. With this technique, the debris flow disaster real-time forecasting neural network model is built according to the rainfall features of the historical debris flow disasters, which includes multiple rain factors such as rainfall of the disaster day, the rainfall of 15 days before the disaster day, the maximal rate of rainfall in one hour and ten minutes. It can forecast the probability, critical rainfall of eruption of the debris flows, through the real-time rainfall monitoring or weather forecasting. Based on the torrent classification and hazard zone mapping, combined with rainfall monitoring in the rainy season and real-time forecasting models, the debris flow disaster early-warning system is built. In this system, the GIS technique, the advanced international software and hardware are applied, which makes the system’s performance steady with good expansibility. The system is a visual information system that serves management and decision-making, which can facilitate timely inspect of the variation of the torrent type and hazardous zone, the torrent management, the early-warning of disasters and the disaster reduction and prevention.展开更多
The meteorological early-warning loudspeaker is a specific initiative for the meteorological departments to address the issues concerning issues concerning agriculture,countryside and farmers.Its significance is that ...The meteorological early-warning loudspeaker is a specific initiative for the meteorological departments to address the issues concerning issues concerning agriculture,countryside and farmers.Its significance is that it can promptly deliver the early-warning information concerning some meteorological disasters(such as torrential rains,typhoons,cold wave,hail)to the areas affected,so as to provide reference and protection for agricultural production and effectively reduce the loss of agricultural producers.Up to now,the meteorological early-warning loudspeakers in Benxi have covered the villages.However,due to irregular occurrence of meteorological disasters,the listeners will turn off the information receivers of meteorological early-warning loudspeakers when they fail to receive meteorological information for a long time,so that the users can not promptly know the early-warning information regarding some sudden meteorological disasters.In view of this,the meteorological departments have introduced a series of management measures,such as the daily use of loudspeakers to publish weather forecast information,aimed at improving the online rate and usage rate of meteorological loudspeakers.And the management platform for online rate of meteorological early-warning loudspeakers is an important part of the management system.展开更多
As the banking industry gradually steps into the digital era of Bank 4.0,business competition is becoming increasingly fierce,and banks are also facing the problem of massive customer churn.To better maintain their cu...As the banking industry gradually steps into the digital era of Bank 4.0,business competition is becoming increasingly fierce,and banks are also facing the problem of massive customer churn.To better maintain their customer resources,it is crucial for banks to accurately predict customers with a tendency to churn.Aiming at the typical binary classification problem like customer churn,this paper establishes an early-warning model for credit card customer churn.That is a dual search algorithm named GSAIBAS by incorporating Golden Sine Algorithm(GSA)and an Improved Beetle Antennae Search(IBAS)is proposed to optimize the parameters of the CatBoost algorithm,which forms the GSAIBAS-CatBoost model.Especially,considering that the BAS algorithm has simple parameters and is easy to fall into local optimum,the Sigmoid nonlinear convergence factor and the lane flight equation are introduced to adjust the fixed step size of beetle.Then this improved BAS algorithm with variable step size is fused with the GSA to form a GSAIBAS algorithm which can achieve dual optimization.Moreover,an empirical analysis is made according to the data set of credit card customers from Analyttica official platform.The empirical results show that the values of Area Under Curve(AUC)and recall of the proposedmodel in this paper reach 96.15%and 95.56%,respectively,which are significantly better than the other 9 common machine learning models.Compared with several existing optimization algorithms,GSAIBAS algorithm has higher precision in the parameter optimization for CatBoost.Combined with two other customer churn data sets on Kaggle data platform,it is further verified that the model proposed in this paper is also valid and feasible.展开更多
Relying on the advanced information technologies, such as information monitoring, data mining, natural language processing etc., the dynamic technology early-warning system is constructed. The system consists of techn...Relying on the advanced information technologies, such as information monitoring, data mining, natural language processing etc., the dynamic technology early-warning system is constructed. The system consists of technology information automatic retrieval, technology information monitoring, technology threat evaluation, and crisis response and management subsystem, which implements uninterrupted dynamic monitoring, trace and crisis early-warning to the specific technology. Empirical study testifies that the system improves the accuracy, timeliness and reliability of technology early-warning.展开更多
Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations...Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations often arise from inappropriate model parameterization.Here we compared five methods for defining community-level specific leaf area(SLA)and leaf C:N across nine contrasting forest sites along the North-South Transect of Eastern China,including biomass-weighted average for the entire plant community(AP_BW)and four simplified selective sampling(biomass-weighted average over five dominant tree species[5DT_BW],basal area weighted average over five dominant tree species[5DT_AW],biomass-weighted average over all tree species[AT_BW]and basal area weighted average over all tree species[AT_AW]).We found that the default values for SLA and leaf C:N embedded in the Biome-BGC v4.2 were higher than the five computational methods produced across the nine sites,with deviations ranging from 28.0 to 73.3%.In addition,there were only slight deviations(<10%)between the whole plant community sampling(AP_BW)predicted NPP and the four simplified selective sampling methods,and no significant difference between the predictions of AT_BW and AP_BW except the Shennongjia site.The findings in this study highlights the critical importance of computational strategies for community-level parameterization in ecosystem process modelling,and will support the choice of parameterization methods.展开更多
Tree-ring chronologies were developed for Sabina saltuaria and Abies faxoniana in mixed forests in the Qionglai Mountains of the eastern Tibetan Plateau.Climate-growth relationship analysis indicated that the two co-e...Tree-ring chronologies were developed for Sabina saltuaria and Abies faxoniana in mixed forests in the Qionglai Mountains of the eastern Tibetan Plateau.Climate-growth relationship analysis indicated that the two co-exist-ing species reponded similarly to climate factors,although S.saltuaria was more sensitive than A.faxoniana.The strong-est correlation was between S.saltuaria chronology and regional mean temperatures from June to November.Based on this relationship,a regional mean temperature from June to November for the period 1605-2016 was constructed.Reconstruction explained 37.3%of the temperature variance during th period 1961-2016.Six major warm periods and five major cold periods were identified.Spectral analysis detected significant interannual and multi-decadal cycles.Reconstruction also revealed the influence of the Atlantic Multi-decadal Oscillation,confirming its importance on climate change on the eastern Tibetan Plateau.展开更多
To establish a financial early-warning model with high accuracy of discrimination and achieve the aim of long-term prediction, principal component analysis (PCA), Fisher discriminant, together with grey forecasting mo...To establish a financial early-warning model with high accuracy of discrimination and achieve the aim of long-term prediction, principal component analysis (PCA), Fisher discriminant, together with grey forecasting models are used at the same time. 110 A-share companies listed on the Shanghai and Shenzhen stock exchange are selected as research samples. And 10 extractive factors with 89.746% of all the original information are determined by applying PCA, which obtains the goal of dimension reduction without information loss. Based on the index system, the early-warning model is constructed according to the Fisher rules. And then the GM(1,1) is adopted to predict financial ratios in 2004, according to 40 testing samples from 2000 to 2003. Finally, two different methods, a self-validated and a forecasting-validated, are used to test the validity of the financial crisis warning model. The empirical results show that the model has better predictability and feasibility, and GM(1,1) contributes to the ability to make long-term predictions.展开更多
Beta-diversity reflects the spatial changes in community species composition which helps to understand how communities are assembled and biodiversity is formed and maintained. Larch(Larix) forests, which are coniferou...Beta-diversity reflects the spatial changes in community species composition which helps to understand how communities are assembled and biodiversity is formed and maintained. Larch(Larix) forests, which are coniferous forests widely distributed in the mountainous and plateau areas in North and Southwest China, are critical for maintaining the environmental conditions and species diversity. Few studies of larch forests have examined the beta-diversity and its constituent components(species turnover and nestedness-resultant components). Here, we used 483 larch forest plots to determine the total betadiversity and its components in different life forms(i.e., tree, shrub, and herb) of larch forests in China and to evaluate the main drivers that underlie this beta-diversity. We found that total betadiversity of larch forests was mainly dependent on the species turnover component. In all life forms,total beta-diversity and the species turnover component increased with increasing geographic, elevational, current climatic, and paleoclimatic distances. In contrast, the nestedness-resultant component decreased across these same distances. Geographic and environmental factors explained 20%-25% of total beta-diversity, 18%-27% of species turnover component, and 4%-16% of nestedness-resultant component. Larch forest types significantly affected total beta-diversity and species turnover component. Taken together, our results indicate that life forms affect beta-diversity patterns of larch forests in China, and that beta-diversity is driven by both niche differentiation and dispersal limitation. Our findings help to greatly understand the mechanisms of community assemblies of larch forests in China.展开更多
Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face ...Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation.展开更多
Understanding the spatial variation,temporal changes,and their underlying driving forces of carbon sequestration in various forests is of great importance for understanding the carbon cycle and carbon management optio...Understanding the spatial variation,temporal changes,and their underlying driving forces of carbon sequestration in various forests is of great importance for understanding the carbon cycle and carbon management options.How carbon density and sequestration in various Cunninghamia lanceolata forests,extensively cultivated for timber production in subtropical China,vary with biodiversity,forest structure,environment,and cultural factors remain poorly explored,presenting a critical knowledge gap for realizing carbon sequestration supply potential through management.Based on a large-scale database of 449 permanent forest inventory plots,we quantified the spatial-temporal heterogeneity of aboveground carbon densities and carbon accumulation rates in Cunninghamia lanceolate forests in Hunan Province,China,and attributed the contributions of stand structure,environmental,and management factors to the heterogeneity using quantile age-sequence analysis,partial least squares path modeling(PLS-PM),and hot-spot analysis.The results showed lower values of carbon density and sequestration on average,in comparison with other forests in the same climate zone(i.e.,subtropics),with pronounced spatial and temporal variability.Specifically,quantile regression analysis using carbon accumulation rates along an age sequence showed large differences in carbon sequestration rates among underperformed and outperformed forests(0.50 and 1.80 Mg·ha^(-1)·yr^(-1)).PLS-PM demonstrated that maximum DBH and stand density were the main crucial drivers of aboveground carbon density from young to mature forests.Furthermore,species diversity and geotopographic factors were the significant factors causing the large discrepancy in aboveground carbon density change between low-and high-carbon-bearing forests.Hotspot analysis revealed the importance of culture attributes in shaping the geospatial patterns of carbon sequestration.Our work highlighted that retaining largesized DBH trees and increasing shade-tolerant tree species were important to enhance carbon sequestration in C.lanceolate forests.展开更多
基金Supported by a Grant from the Science and Technology Project ofYunnan Province(2006NG02)~~
文摘By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant diseases based on particle swarm and neural network algorithm was established. The test results showed that the construction of early-warning model is effective and feasible, which will provide a via- ble model structure to establish the effective early-warning platform.
基金supported by the National Natural Science Foundation of China (71303238)the National Science and Technology Support Plan Projects (2012BAH20B04)the compilation group of the China Agricultural Outlook Report (2015–2024)
文摘The primary goal of Chinese agricultural development is to guarantee national food security and supply of major agricultural products. Hence, the scientiifc work on agricultural monitoring and early warning as wel as agricultural outlook must be strengthened. In this study, we develop the China Agricultural Monitoring and Early-warning System (CAMES) on the basis of a comparative study of domestic and international agricultural outlook models. The system is a dynamic and multi-market partial equilibrium model that integrates biological mechanisms with economic mechanisms. This system, which includes 11 categories of 953 kinds of agricultural products, could dynamical y project agricultural market supply and demand, assess food security, and conduct scenario analysis at different spatial levels, time scale levels, and macro-micro levels. Based on the CAMES, the production, consumption, and trade of the major agricultural products in China over the next decade are projected. The fol owing conclusions are drawn:i) The production of major agricultural products wil continue to grow steadily, mainly because of the increase in yield. i ) The growth of agricultural consumption wil be slightly higher than that of agricultural production. Meanwhile, a high self-sufifciency rate is expected for cereals such as rice, wheat, and maize, with the rate being stable at around 97%. i i) Agricultural trade wil continue to thrive. The growth of soybean and milk im-ports wil slow down, but the growth of traditional agricultural exports such as vegetables and fruits is expected to continue.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2018YFC0407104)the National Natural Science Foundation of China(Grants No.52079049 and 51739003)+1 种基金the Central University Basic Research Project(Grant No.B200202160)the Water Science Project of Xinjiang(Grant No.YF 2020-05).
文摘The mechanical parameters of materials in a dam body and dam foundation tend to change when dams are reinforced in aging processes.It is important to use an early-warning index to reflect the safety status of dams,particularly of heightened projects in the impoundment period.Herein,a new method for monitoring the safety status of heightened dams is proposed based on the deformation monitoring data of a dam structure,a statistical model,and finite-element numerical simulation.First,a fast optimization inversion method for estimation of dam mechanical parameters was developed,which used the water pressure component extracted from a statistical model,an improved inversion objective function,and a genetic optimization iterative algorithm.Then,a finite element model of a heightened concrete gravity dam was established,and the deformation behavior of the dam with rising water levels in the impoundment period was simulated.Subsequently,mechanical parameters of aged dam parts were calculated using the fast optimization inversion method with simulated deformation and the water pressure deformation component obtained by the statistical model under the same conditions of water pressure change.Finally,a new earlywarning index of dam deformation was constructed by means of the forward-simulated deformation and other components of the statistical model.The early-warning index is useful for forecasting dam deformation under different water levels,especially high water levels.
基金Project 70533050 supported by the National Natural Science Foundation of China
文摘The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so that the data could be processed at different priority levels in C language. Two different data processing models, one with priority and the other without priority, were built based on queuing theory. Their theoretical formulas were determined via a M/M/I model in order to calculate average occupation time of each measuring point in an early-warning program. We validated the model with the gas early-warning system of the Huaibei Coalmine Group Corp. The results indicate that the average occupation time for gas data processing by using the queuing system model with priority is nearly 1/30 of that of the model without priority.
文摘By analyzing the heavy fog data in Chizhou City in recent 50 years(1959-2007),the general rules of meteorological elements variations were found when the heavy fog happened.The meteorological elements included the temperature,humidity,wind direction,wind speed,air pressure and so on.The conceptual models of high-altitude and ground situation were established when the heavy fog happened in Chizhou City.Based on considering sufficiently the special geographical environment in Chizhou City,we found the key factors which affected the local heavy fog via the relative analyses.By using the statistical forecast methods which included the second-level judgment method and regression method of event probability and so on,the forecast mode equation of heavy fog was established.Moreover,the objective forecast system of heavy fog in Chizhou City was also manufactured.It provided the basis and platform which could be referred for the heavy fog forecast,service and the release of early-warning signal.
文摘The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not successful in forecasting the movement behaviors of faults.In the present study,a new mechanical model of fault activity,considering the shear strength on the fault plane and the influence of the resistance force,is established based on the occurrence condition of earthquake.A remote real-time monitoring system is correspondingly developed to obtain the changes in mechanical components within fault.Taking into consideration the local geological conditions and the history of fault activity in Zhangjiakou of China,an active fault exposed in the region of Zhangjiakou is selected to be directly monitored by the real-time monitoring technique.A thorough investigation on local fault structures results in the selection of two suitable sites for monitoring potential active tectonic movements of Zhangjiakou fault.Two monitoring curves of shear strength,recorded during a monitoring period of 6 months,turn out to be steady,which indicates that the potential seismic activities hardly occur in the adjacent region in the near future.This monitoring technique can be used for early-warning prediction of the movement of active fault,and can help to further gain an insight into the interaction between fault activity and relevant mechanisms.
文摘Risk early-warning of natural disasters is a very intricate non-deterministic prediction, and it was difficult to resolve the conflicts and incompatibility of the risk structure. Risk early-warning factors of natural disasters were differentiated into essential attributes and external characters, and its workflow mode was established on risk early-warning structure with integrated Entropy and DEA model, whose steps were put forward. On the basis of standard risk early-warning DEA model of natural disasters, weight coefficient of risk early-warning factors was determined with Information Entropy method, which improved standard risk early-warning DEA model with non-Archimedean infinitesimal, and established risk early-warning preference DEA model based on integrated entropy weight and DEA Model. Finally, model was applied into landslide risk early-warning case in earthquake-damaged emergency process on slope engineering, which exemplified the outcome could reflect more risk information than the method of standard DEA model, and reflected the rationality, feasibility, and impersonality, revealing its better ability on comprehensive safety and structure risk.
文摘The period economic fluctuation is vital for an enterprise to exist and further develop, it directly affect the enterprise financial health. So, it is significant to build up financial early-warning index and measure the warning condition that the enterprise faces and take the effective measures to eliminate. We criticize Altman’sZ calculating model and build up some new indexes for enterprise financial early-warning condition measuring and making sound decision.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. JUSRP21117)the Program for Innovative Research Team of Jiangnan University (Grant No. 2008CX002)
文摘Over the course of human history, influenza pandemics have been seen as major disasters, so studies on the influenza virus have become an important issue for many experts and scholars. Comprehensive research has been performed over the years on the biological properties, chemical characteristics, external environmental factors and other aspects of the virus, and some results have been achieved. Based on the chaos game representation walk model, this paper uses the time series analysis method to study the DNA sequences of the influenza virus from 1913 to 2010, and works out the early-warning signals indicator value for the outbreak of an influenza pandemic. The variances in the CCR wall〈 sequences for the pandemic years (or + -1 to 2 years) are significantly higher than those for the adjacent years, while those in the non-pandemic years are usually smaller. In this way we can provide an influenza early-warning mechanism so that people can take precautions and be well prepared prior to a pandemic.
基金Fund by the Ministry of Science and Technology, No.2002BA516A17 Foundation of Chinese Academy of Forestry Science, No.200114
文摘According to the principle of the eruption of debris flows, the new torrent classification techniques are brought forward. The torrent there can be divided into 4 types such as the debris flow torrent with high destructive strength, the debris flow torrent, high sand-carrying capacity flush flood torrent and common flush flood by the techniques. In this paper, the classification indices system and the quantitative rating methods are presented. Based on torrent classification, debris flow torrent hazard zone mapping techniques by which the debris flow disaster early-warning object can be ascertained accurately are identified. The key techniques of building the debris flow disaster neural network (NN) real time forecasting model are given detailed explanations in this paper, including the determination of neural node at the input layer, the output layer and the implicit layer, the construction of knowledge source and the initial weight value and so on. With this technique, the debris flow disaster real-time forecasting neural network model is built according to the rainfall features of the historical debris flow disasters, which includes multiple rain factors such as rainfall of the disaster day, the rainfall of 15 days before the disaster day, the maximal rate of rainfall in one hour and ten minutes. It can forecast the probability, critical rainfall of eruption of the debris flows, through the real-time rainfall monitoring or weather forecasting. Based on the torrent classification and hazard zone mapping, combined with rainfall monitoring in the rainy season and real-time forecasting models, the debris flow disaster early-warning system is built. In this system, the GIS technique, the advanced international software and hardware are applied, which makes the system’s performance steady with good expansibility. The system is a visual information system that serves management and decision-making, which can facilitate timely inspect of the variation of the torrent type and hazardous zone, the torrent management, the early-warning of disasters and the disaster reduction and prevention.
文摘The meteorological early-warning loudspeaker is a specific initiative for the meteorological departments to address the issues concerning issues concerning agriculture,countryside and farmers.Its significance is that it can promptly deliver the early-warning information concerning some meteorological disasters(such as torrential rains,typhoons,cold wave,hail)to the areas affected,so as to provide reference and protection for agricultural production and effectively reduce the loss of agricultural producers.Up to now,the meteorological early-warning loudspeakers in Benxi have covered the villages.However,due to irregular occurrence of meteorological disasters,the listeners will turn off the information receivers of meteorological early-warning loudspeakers when they fail to receive meteorological information for a long time,so that the users can not promptly know the early-warning information regarding some sudden meteorological disasters.In view of this,the meteorological departments have introduced a series of management measures,such as the daily use of loudspeakers to publish weather forecast information,aimed at improving the online rate and usage rate of meteorological loudspeakers.And the management platform for online rate of meteorological early-warning loudspeakers is an important part of the management system.
基金This work is supported by the National Natural Science Foundation of China(Nos.72071150,71871174).
文摘As the banking industry gradually steps into the digital era of Bank 4.0,business competition is becoming increasingly fierce,and banks are also facing the problem of massive customer churn.To better maintain their customer resources,it is crucial for banks to accurately predict customers with a tendency to churn.Aiming at the typical binary classification problem like customer churn,this paper establishes an early-warning model for credit card customer churn.That is a dual search algorithm named GSAIBAS by incorporating Golden Sine Algorithm(GSA)and an Improved Beetle Antennae Search(IBAS)is proposed to optimize the parameters of the CatBoost algorithm,which forms the GSAIBAS-CatBoost model.Especially,considering that the BAS algorithm has simple parameters and is easy to fall into local optimum,the Sigmoid nonlinear convergence factor and the lane flight equation are introduced to adjust the fixed step size of beetle.Then this improved BAS algorithm with variable step size is fused with the GSA to form a GSAIBAS algorithm which can achieve dual optimization.Moreover,an empirical analysis is made according to the data set of credit card customers from Analyttica official platform.The empirical results show that the values of Area Under Curve(AUC)and recall of the proposedmodel in this paper reach 96.15%and 95.56%,respectively,which are significantly better than the other 9 common machine learning models.Compared with several existing optimization algorithms,GSAIBAS algorithm has higher precision in the parameter optimization for CatBoost.Combined with two other customer churn data sets on Kaggle data platform,it is further verified that the model proposed in this paper is also valid and feasible.
基金Sponsored by Excellent Young Scholars Research Fund of Beijing Institute of Technology (c2007Y0820)Program for New Century Excellent Talents in University (NCET)"985" Philosophy and Social Science Innovation Base of the Ministry of Education(107008200400024)
文摘Relying on the advanced information technologies, such as information monitoring, data mining, natural language processing etc., the dynamic technology early-warning system is constructed. The system consists of technology information automatic retrieval, technology information monitoring, technology threat evaluation, and crisis response and management subsystem, which implements uninterrupted dynamic monitoring, trace and crisis early-warning to the specific technology. Empirical study testifies that the system improves the accuracy, timeliness and reliability of technology early-warning.
基金This research was funded by the National Natural Science Foundation of China(Grant Nos.31870426).
文摘Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations often arise from inappropriate model parameterization.Here we compared five methods for defining community-level specific leaf area(SLA)and leaf C:N across nine contrasting forest sites along the North-South Transect of Eastern China,including biomass-weighted average for the entire plant community(AP_BW)and four simplified selective sampling(biomass-weighted average over five dominant tree species[5DT_BW],basal area weighted average over five dominant tree species[5DT_AW],biomass-weighted average over all tree species[AT_BW]and basal area weighted average over all tree species[AT_AW]).We found that the default values for SLA and leaf C:N embedded in the Biome-BGC v4.2 were higher than the five computational methods produced across the nine sites,with deviations ranging from 28.0 to 73.3%.In addition,there were only slight deviations(<10%)between the whole plant community sampling(AP_BW)predicted NPP and the four simplified selective sampling methods,and no significant difference between the predictions of AT_BW and AP_BW except the Shennongjia site.The findings in this study highlights the critical importance of computational strategies for community-level parameterization in ecosystem process modelling,and will support the choice of parameterization methods.
基金This study was supported by the National Key Research and Development Program of China(No.2018YFA0605601)Hong Kong Research Grants Council(No.106220169)+1 种基金the National Natural Science Foundation of China(Nos.41671042,42077417,42105155,and 42201083)the National Geographic Society(No.EC-95776R-22).
文摘Tree-ring chronologies were developed for Sabina saltuaria and Abies faxoniana in mixed forests in the Qionglai Mountains of the eastern Tibetan Plateau.Climate-growth relationship analysis indicated that the two co-exist-ing species reponded similarly to climate factors,although S.saltuaria was more sensitive than A.faxoniana.The strong-est correlation was between S.saltuaria chronology and regional mean temperatures from June to November.Based on this relationship,a regional mean temperature from June to November for the period 1605-2016 was constructed.Reconstruction explained 37.3%of the temperature variance during th period 1961-2016.Six major warm periods and five major cold periods were identified.Spectral analysis detected significant interannual and multi-decadal cycles.Reconstruction also revealed the influence of the Atlantic Multi-decadal Oscillation,confirming its importance on climate change on the eastern Tibetan Plateau.
文摘To establish a financial early-warning model with high accuracy of discrimination and achieve the aim of long-term prediction, principal component analysis (PCA), Fisher discriminant, together with grey forecasting models are used at the same time. 110 A-share companies listed on the Shanghai and Shenzhen stock exchange are selected as research samples. And 10 extractive factors with 89.746% of all the original information are determined by applying PCA, which obtains the goal of dimension reduction without information loss. Based on the index system, the early-warning model is constructed according to the Fisher rules. And then the GM(1,1) is adopted to predict financial ratios in 2004, according to 40 testing samples from 2000 to 2003. Finally, two different methods, a self-validated and a forecasting-validated, are used to test the validity of the financial crisis warning model. The empirical results show that the model has better predictability and feasibility, and GM(1,1) contributes to the ability to make long-term predictions.
基金supported by the Major Program for Basic Research Project of Yunnan Province (No. 202101BC070002)the National Natural Science Foundation of China (No. 32201426, No. 31988102)the National Science and Technology Basic Project of China (No. 2015FY210200)
文摘Beta-diversity reflects the spatial changes in community species composition which helps to understand how communities are assembled and biodiversity is formed and maintained. Larch(Larix) forests, which are coniferous forests widely distributed in the mountainous and plateau areas in North and Southwest China, are critical for maintaining the environmental conditions and species diversity. Few studies of larch forests have examined the beta-diversity and its constituent components(species turnover and nestedness-resultant components). Here, we used 483 larch forest plots to determine the total betadiversity and its components in different life forms(i.e., tree, shrub, and herb) of larch forests in China and to evaluate the main drivers that underlie this beta-diversity. We found that total betadiversity of larch forests was mainly dependent on the species turnover component. In all life forms,total beta-diversity and the species turnover component increased with increasing geographic, elevational, current climatic, and paleoclimatic distances. In contrast, the nestedness-resultant component decreased across these same distances. Geographic and environmental factors explained 20%-25% of total beta-diversity, 18%-27% of species turnover component, and 4%-16% of nestedness-resultant component. Larch forest types significantly affected total beta-diversity and species turnover component. Taken together, our results indicate that life forms affect beta-diversity patterns of larch forests in China, and that beta-diversity is driven by both niche differentiation and dispersal limitation. Our findings help to greatly understand the mechanisms of community assemblies of larch forests in China.
基金financially supported by the National Natural Science Foundation of China(No.52174001)the National Natural Science Foundation of China(No.52004064)+1 种基金the Hainan Province Science and Technology Special Fund “Research on Real-time Intelligent Sensing Technology for Closed-loop Drilling of Oil and Gas Reservoirs in Deepwater Drilling”(ZDYF2023GXJS012)Heilongjiang Provincial Government and Daqing Oilfield's first batch of the scientific and technological key project “Research on the Construction Technology of Gulong Shale Oil Big Data Analysis System”(DQYT-2022-JS-750)。
文摘Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation.
基金the National Natural Science Foundation of China(Nos.U20A2089 and 41971152)the Research Foundation of the Department of Natural Resources of Hunan Province(No.20230138ST)to SLthe open research fund of Technology Innovation Center for Ecological Conservation and Restoration in Dongting Lake Basin,Ministry of Natural Resources(No.2023005)to YZ。
文摘Understanding the spatial variation,temporal changes,and their underlying driving forces of carbon sequestration in various forests is of great importance for understanding the carbon cycle and carbon management options.How carbon density and sequestration in various Cunninghamia lanceolata forests,extensively cultivated for timber production in subtropical China,vary with biodiversity,forest structure,environment,and cultural factors remain poorly explored,presenting a critical knowledge gap for realizing carbon sequestration supply potential through management.Based on a large-scale database of 449 permanent forest inventory plots,we quantified the spatial-temporal heterogeneity of aboveground carbon densities and carbon accumulation rates in Cunninghamia lanceolate forests in Hunan Province,China,and attributed the contributions of stand structure,environmental,and management factors to the heterogeneity using quantile age-sequence analysis,partial least squares path modeling(PLS-PM),and hot-spot analysis.The results showed lower values of carbon density and sequestration on average,in comparison with other forests in the same climate zone(i.e.,subtropics),with pronounced spatial and temporal variability.Specifically,quantile regression analysis using carbon accumulation rates along an age sequence showed large differences in carbon sequestration rates among underperformed and outperformed forests(0.50 and 1.80 Mg·ha^(-1)·yr^(-1)).PLS-PM demonstrated that maximum DBH and stand density were the main crucial drivers of aboveground carbon density from young to mature forests.Furthermore,species diversity and geotopographic factors were the significant factors causing the large discrepancy in aboveground carbon density change between low-and high-carbon-bearing forests.Hotspot analysis revealed the importance of culture attributes in shaping the geospatial patterns of carbon sequestration.Our work highlighted that retaining largesized DBH trees and increasing shade-tolerant tree species were important to enhance carbon sequestration in C.lanceolate forests.