期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Trajectories in nitrogen availability during forest secondary succession:illustrated by foliarδ^(15)N
1
作者 Ying Tu Ang Wang +4 位作者 Feifei Zhu Geshere Abdisa Gurmesa Erik A.Hobbie Weixing Zhu Yunting Fang 《Ecological Processes》 SCIE EI 2022年第1期400-410,共11页
Background:Forest succession is an important ecological process and has been studied for more than a century.However,changes in nitrogen(N)availability during succession remain unclear as they may lead to either N sat... Background:Forest succession is an important ecological process and has been studied for more than a century.However,changes in nitrogen(N)availability during succession remain unclear as they may lead to either N satura-tion or N limitation.Here,we propose a conceptual model to illustrate changes in N availability during four stages of secondary succession using the natural abundance of ^(15) N in plant leaves(foliarδ^(15)N).We predicted that N availability would decline in the early stages of succession and then increase in late stages,coinciding with the changes in foliarδ^(15)N,with the inflection point varying in different climate zones.Data on foliarδ^(15)N from 16 succession sequences were synthesized to explore changes in N availability during forest succession.Results:The compiled data were consistent with the proposed conceptual model.Foliarδ^(15)N in boreal and temperate forests decreased significantly in the first two stages of succession(estimated to last at least 66 years in temperate forests),at a rate of 0.18‰and 0.38‰per decade,respectively,and decreased slightly in tropical forests in the first 23 years.Foliarδ^(15)N is projected to increase in later stages in all forests,which is supported by observations in both temperate and tropical forests.The inflection points of N availability when N limitation peaked during succession were different in different climate zones,implying different ecosystem N turnovers.Conclusions:Our study reconciles the controversies regarding changes in N availability during forest secondary succession.Our findings are also useful for predicting the recovery of N and carbon accumulation during succession.Nonetheless,studies on forest secondary succession using foliarδ^(15)N have thus far been limited,and more research should be conducted to further verify the conceptual model proposed here. 展开更多
关键词 Foliarδ^(15)N forest secondary succession Nitrogen availability Space-for-time substitution
原文传递
Shifts in community leaf functional traits are related to litter decomposition along a secondary forest succession series in subtropical China 被引量:4
2
作者 David Eichenberg Stefan Trogisch +1 位作者 Yuanyuan Huang Jin-Sheng Heand Helge Bruelheide 《Journal of Plant Ecology》 SCIE 2015年第4期401-410,共10页
Aims We investigated shifts in community-weighted mean traits(CWm)of 14 leaf functional traits along a secondary successional series in an evergreen broadleaf forest in subtropical southeast China.most of the investig... Aims We investigated shifts in community-weighted mean traits(CWm)of 14 leaf functional traits along a secondary successional series in an evergreen broadleaf forest in subtropical southeast China.most of the investigated traits have been reported to affect litter decomposition in previous studies.We asked whether changes in CWms along secondary succession followed similar patterns for all investigated traits and whether the shifts in CWm indicated a change in resource use strategy along the successional gradient.using community decomposition rates(k-rates)estimated from annual lit-ter production and standing litter biomass,we asked whether the dynamics of litter decomposition were related to changes in leaf functional traits along the successional series.Methods twenty-seven plots were examined for shifts in leaf CWm traits as well as in k-rates along a series of secondary forest succession cov-ered in the framework of the bEF-China project.We investigated whether the changes in CWms followed similar patterns for all traits with ongoing succession.three alternative linear models were used to reveal the general patterns of shifts in CWm trait values.moreover,multiple regression analysis was applied to investigate whether there were causal relationships between the changes in leaf functional traits and the dynamics of litter decomposition along secondary succession.We furthermore assessed which traits had the highest impact on community litter decomposition.Important Findingsshifts in CWm values generally followed logarithmic patterns for all investigated traits,whereas community k-rates remained stable along the successional gradient.In summary,the shifts in CWm values indicate a change in community resource use strategy from high nutrient acquisition to nutrient retention with ongoing succession.stands with higher CWm values of traits related to nutrient acquisition had also higher CWm values of traits related to chemical resistance,whereas stands with higher CWm values of traits related to nutrient retention exhibited higher CWm values in leaf physical defense.moreover,high values in CWm values related to nutritional quality(such as high leaf phosphorus concentrations)were found to promote com-munity k-rates,whereas high values in physical or chemical defense traits(such as high contents in polyphenols or high leaf toughness)decreased litter decomposition rates.In consequence,litter decom-position,which was simultaneously affected by these characteristics,did not change significantly along succession.our findings show that leaf decomposition within the investigated communities is dependent on the interplay of several traits and is a result from interactions of traits that affect decomposition in opposing directions. 展开更多
关键词 secondary forest succession bEF-China nutrient cycling plant polyphenols multiple regression analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部