Background:Neutrophils are traditionally viewed as first responders but have a short onset of action in response to traumatic brain injury(TBI).However,the heterogeneity,multifunctionality,and time-dependent modulatio...Background:Neutrophils are traditionally viewed as first responders but have a short onset of action in response to traumatic brain injury(TBI).However,the heterogeneity,multifunctionality,and time-dependent modulation of brain damage and outcome mediated by neutrophils after TBI remain poorly understood.Methods:Using the combined single-cell transcriptomics,metabolomics,and proteomics analysis from TBI patients and the TBI mouse model,we investigate a novel neutrophil phenotype and its associated effects on TBI outcome by neurological deficit scoring and behavioral tests.We also characterized the underlying mechanisms both invitro and invivo through molecular simulations,signaling detections,gene expression regulation assessments[including dual-luciferase reporter and chromatin immunoprecipitation(ChIP)assays],primary cultures or co-cultures of neutrophils and oligodendrocytes,intracellular iron,and lipid hydroperoxide concentration measurements,as well as forkhead box protein O1(FOXO1)conditional knockout mice.Results:We identified that high expression of the FOXO1 protein was induced in neutrophils after TBI both in TBI patients and the TBI mouse model.Infiltration of these FOXO1high neutrophils in the brain was detected not only in the acute phase but also in the chronic phase post-TBI,aggravating acute brain inflammatory damage and promoting late TBI-induced depression.In the acute stage,FOXO1 upregulated cytoplasmic Versican(VCAN)to interact with the apoptosis regulator B-cell lymphoma-2(BCL-2)-associated X protein(BAX),suppressing the mitochondrial translocation of BAX,which mediated the antiapoptotic effect companied with enhancing interleukin-6(IL-6)production of FOXO1high neutrophils.In the chronic stage,the“FOXO1-transferrin receptor(TFRC)”mechanism contributes to FOXO1high neutrophil ferroptosis,disturbing the iron homeostasis of oligodendrocytes and inducing a reduction in myelin basic protein,which contributes to the progression of late depression after TBI.Conclusions:FOXO1high neutrophils represent a novel neutrophil phenotype that emerges in response to acute and chronic TBI,which provides insight into the heterogeneity,reprogramming activity,and versatility of neutrophils in TBI.展开更多
BACKGROUND The self-assembly of solid organs from stem cells has the potential to greatly expand the applicability of regenerative medicine.Stem cells can self-organise into microsized organ units,partially modelling ...BACKGROUND The self-assembly of solid organs from stem cells has the potential to greatly expand the applicability of regenerative medicine.Stem cells can self-organise into microsized organ units,partially modelling tissue function and regeneration.Dental pulp organoids have been used to recapitulate the processes of tooth development and related diseases.However,the lack of vasculature limits the utility of dental pulp organoids.AIM To improve survival and aid in recovery after stem cell transplantation,we demonstrated the three-dimensional(3D)self-assembly of adult stem cell-human dental pulp stem cells(hDPSCs)and endothelial cells(ECs)into a novel type of spheroid-shaped dental pulp organoid in vitro under hypoxia and conditioned medium(CM).METHODS During culture,primary hDPSCs were induced to differentiate into ECs by exposing them to a hypoxic environment and CM.The hypoxic pretreated hDPSCs were then mixed with ECs at specific ratios and conditioned in a 3D environment to produce prevascularized dental pulp organoids.The biological characteristics of the organoids were analysed,and the regulatory pathways associated with angiogenesis were studied.RESULTS The combination of these two agents resulted in prevascularized human dental pulp organoids(Vorganoids)that more closely resembled dental pulp tissue in terms of morphology and function.Single-cell RNA sequencing of dental pulp tissue and RNA sequencing of Vorganoids were integrated to analyse key regulatory pathways associated with angiogenesis.The biomarkers forkhead box protein O1 and fibroblast growth factor 2 were identified to be involved in the regulation of Vorganoids.CONCLUSION In this innovative study,we effectively established an in vitro model of Vorganoids and used it to elucidate new mechanisms of angiogenesis during regeneration,facilitating the development of clinical treatment strategies.展开更多
The O subfamily of forkhead box(FoxO) proteins is the downstream effector of the insulin-like growth factor-1/phosphoinositide 3-kinase/protein kinase B(IGF-1/PI3K/PKB) signal pathway.The objective of the present stud...The O subfamily of forkhead box(FoxO) proteins is the downstream effector of the insulin-like growth factor-1/phosphoinositide 3-kinase/protein kinase B(IGF-1/PI3K/PKB) signal pathway.The objective of the present study was to examine the expressions of three members of FoxO proteins,FoxO1,FoxO3a,and FoxO4 in the duodenum of Sprague-Dawley rats at different ages.The result demonstrated that the expression of FoxO4 in rat duodenum showed an age-dependent manner.At Day 21,there were no detectable localization and expression of FoxO4 in the duodenum,while,at Months 2 and 6,localization and expression of FoxO4 were distinct.In addition,FoxO4 staining was primarily concentrated in the cell nuclei of the lamina propria around the intestinal gland of the duodenum in 2-month-old rats,but was not detectable in the same area in 6-month-old rats.Our results showed also that although FoxO3a existed in the cytoplasm of the lamina propria at a low level at the 2-and 6-month marks,it was still not detectable at Day 21.Besides,FoxO1 was not detectable in all parts and stages.Taken together,our findings suggested that the cell-specific and age-dependent expressional patterns of FoxO4 and FoxO3a proteins in the duodenum play some roles in the development and growth performance of the rat duodenum.展开更多
Background:Administration of propofol,an intravenous anesthetic with antioxidant property,immediately at the onset of post-ischemic reperfusion(propofol postconditioning,P-PostC) has been shown to confer cardioprotect...Background:Administration of propofol,an intravenous anesthetic with antioxidant property,immediately at the onset of post-ischemic reperfusion(propofol postconditioning,P-PostC) has been shown to confer cardioprotection against ischemia–reperfusion(I/R) injury,while the underlying mechanism remains incompletely understood.The forkhead box O(FoxO) transcription factors are reported to play critical roles in activating cardiomyocyte survival signaling throughout the process of cellular injuries induced by oxidative stress and are also involved in hypoxic postconditioning mediated neuroprotection,however,the role of FoxO in postconditioning mediated protection in the heart and in particular in high glucose condition is unknown.Methods:Rat heart-derived H9c2 cells were exposed to high glucose(HG) for 48 h,then subjected to hypoxia/reoxygenation(H/R,composed of 8 h of hypoxia followed by 12 h of reoxygenation) in the absence or presence of postconditioning with various concentrations of propofol(P-PostC) at the onset of reoxygenation.After having identified the optical concentration of propofol,H9c2 cells were subjected to H/R and P-PostC in the absence or presence of FoxO1 or FoxO3a gene silencing to explore their roles in P-PostC mediated protection against apoptotic and autophagic cell deaths under hyperglycemia.Results:The results showed that HG with or without H/R decreased cell viability,increased lactate dehydrogenase(LDH) leakage and the production of reactive oxygen species(ROS) in H9c2 cells,all of which were significantly reversed by propofol(P-PostC),especially at the concentration of 25 μmol/L(P25)(P<0.05,NC vs.HG;HG vs.HG+HR;HG+HR+P12.5 or HG+HR+P25 or HG+HR+P50 vs.HG+HR).Moreover,we found that propofol(P25) decreased H9c2 cells apoptosis and autophagy that were concomitant with increased FoxO1 and FoxO3a expression(P<0.05,HG+HR+P25 vs.HG+HR).The protective effects of propofol(P25) against H/R injury were reversed by silencing FoxO1 or FoxO3a(P<0.05,HG+HR+P25 vs.HG+HR+P25+siRNA-1 or HG+HR+P25+siRNA-5).Conclusions:It is concluded that propofol postconditioning attenuated H9c2 cardiac cells apoptosis and autophagy induced by H/R injury through upregulating FoxO1 and FoxO3a under hyperglycemia.展开更多
Objective To investigate miR-183-5p targeting to forkhead box protein O1(FOXO1)and its corresponding effect on the proliferation,migration,invasion,and epithelial-mesenchymal transition(EMT)of non-small cell lung canc...Objective To investigate miR-183-5p targeting to forkhead box protein O1(FOXO1)and its corresponding effect on the proliferation,migration,invasion,and epithelial-mesenchymal transition(EMT)of non-small cell lung cancer(NSCLC)cells.Methods NSCLC tissues and adjacent normal tissues from 60 patients with NSCLC adenocarcinoma were obtained via pathological biopsy or intraoperative resection.Several cell lines were cultured in vitro,including the human normal lung epithelial cell line BEAS-2B and human NSCLC cell lines A549,SPCA-1,PC-9,and 95-D.miR-183-5p and FOXO1 mRNA expression in tissues and cells were detected by qRT-PCR;the corresponding correlations in NSCLC tissues were analyzed using the Pearson test,and the relationship between miR-183-5p expression and clinicopathological parameters was analyzed.The miR-183-5p-mediated regulation of FOXO1 was verified by bioinformatics prediction alongside double luciferase,RNA-binding protein immunoprecipitation(RIP)assay,and pull-down experiments.A549 cells were divided into control,anti-miR-NC,anti-miR-183-5p,miR-NC,miR-183-5p,miR-183-5p+pcDNA3.1,and miR-183-5p+pcDNA3.1-FOXO1 groups.Cell proliferation,invasion,migration,apoptosis,and cell cycle distribution were detected using an MTT assay,clone formation assay,Transwell assay,scratch test,and flow cytometry,respectively.The expression of EMT-related proteins in the cells was analyzed by western blotting.The effect of miR-185-3p silencing on the development of transplanted tumors was detected by analyzing tumor formation in nude mice.Results miR-183-5p expression was significantly higher in NSCLC tissues and cells than in adjacent normal tissues,whereas FOXO1 mRNA expression was significantly down-regulated.There was a significant negative correlation between miR-183-5p and FOXO1 mRNA in NSCLC tissues(P<0.05).Additionally,the expression of miR-183-5p was significantly correlated with tumor size,tumor differentiation,and tumor-node-metastasis stage in patients with NSCLC(P<0.05).miR-183-5p targeted and inhibited FOXO1 expression.Compared to the anti-miR-NC group,the cell proliferation,scratch healing rate,N-cadherin and vimentin protein expression,and the proportion of S phase cells were significantly lower in the anti-miR-183-5p group,whereas the protein expression of E-cadherin andα-catenin and the proportion of G0/G1 phase cells were significantly higher;additionally,the frequency of colony formation and invasion were significantly lower in the anti-miR-183-5p group(P<0.05).Compared to the miR-NC group,the cell proliferation,scratch healing rate,N-cadherin and vimentin protein expression,and the proportion of S phase cells in the miR-183-5p group were significantly higher,whereas the E-cadherin andα-catenin protein expression and the proportion of G0/G1 phase cells were significantly lower;furthermore,the frequency of colony formation and invasion were significantly higher in the miR-183-5p group(P<0.05).Compared with the miR-183-5p+pcDNA3.1 group,the OD value,scratch healing rate,N-cadherin and vimentin protein expression,and the proportion of S phase cells were significantly lower in the miR-183-5p+pcDNA3.1-FOXO1 group,whereas E-cadherin andα-catenin protein expression and the proportion of G0/G1 phase cells were significantly higher;additionally,the frequency of colony formation and invasion was significantly lower in the miR-183-5p+pcDNA3.1-FOXO1 group(P<0.05).Overall,silencing miR-185-3p inhibited the growth of transplanted tumors and promoted FOXO1 expression.Conclusion Overexpression of miR-183-5p can inhibit apoptosis and promote the proliferation,migration,invasion,and EMT,of NSCLC cells by down-regulating FOXO1 expression.展开更多
目的探讨头框转录因子O家族4(class O of forkhead box transcriptionfactor 4,FOXO4)对喉癌细胞增殖凋亡能力的影响。方法应用Western blot法检测喉癌组织及对应癌旁组织中FOXO4的表达水平。细胞转染FOXO4过表达载体(p-EGFP-C1/FOXO4组...目的探讨头框转录因子O家族4(class O of forkhead box transcriptionfactor 4,FOXO4)对喉癌细胞增殖凋亡能力的影响。方法应用Western blot法检测喉癌组织及对应癌旁组织中FOXO4的表达水平。细胞转染FOXO4过表达载体(p-EGFP-C1/FOXO4组)和空载体(p-EGFP-C1组),同时设置未转染组,未转染组中只加入转染试剂。Western blot法检测转染后细胞中FOXO4蛋白水平。四甲基偶氮唑蓝(MTT)检测细胞增殖,流式细胞术检测细胞凋亡,Western blot检测细胞中活化的含半胱氨酸的天冬氨酸蛋白水解酶3(Cleaved Caspase-3)、Caspase-3、活化的含半胱氨酸的天冬氨酸蛋白水解酶9(Cleaved Caspase-9)、Caspase-9、β-连环蛋白(β-catenin)、Wnt1表达水平。用Wnt/β-catenin信号通路激活剂作用于转染p-EGFP-C1/FOXO4后的喉癌细胞(激活剂组),检测细胞增殖、凋亡情况。结果 FOXO4在喉癌组织中表达水平明显低于癌旁组织(P=0.000)。p-EGFP-C1/FOXO4组细胞中FOXO4表达水平明显高于未转染组(P=0.000)。p-EGFP-C1/FOXO4组细胞存活率及β-catenin、Wnt1水平明显低于未转染组(P=0.002,P=0.004,P=0.006),细胞凋亡率及Cleaved Caspase-3、Caspase-3、Cleaved Caspase-9、C a s p a s e-9表达水平均明显高于未转染组(P=0.0 0 2,P=0.001,h P<0.05,P=0.004,j P<0.05)。Wnt/β-catenin信号通路激活剂可以部分逆转FOXO4抑增殖和促凋亡作用。结论 FOXO4能够促进人喉癌细胞凋亡,抑制喉癌细胞增殖,作用机制可能与Wnt/β-catenin信号通路有关。展开更多
基金This work was supported by the National Natural Science Foundation of China(82071779 and 81901626)the Science Fund for Creative Research Groups of Chongqing Municipal Education Commission of China,the grants from the Talent Foundation of Army Medical University(to Shuang-Shuang Dai)+1 种基金the Scientific Research Grant(ALJ22J003)the Chongqing Natural Science Foundation of China(CSTB2022NSCQ-MSX0177).
文摘Background:Neutrophils are traditionally viewed as first responders but have a short onset of action in response to traumatic brain injury(TBI).However,the heterogeneity,multifunctionality,and time-dependent modulation of brain damage and outcome mediated by neutrophils after TBI remain poorly understood.Methods:Using the combined single-cell transcriptomics,metabolomics,and proteomics analysis from TBI patients and the TBI mouse model,we investigate a novel neutrophil phenotype and its associated effects on TBI outcome by neurological deficit scoring and behavioral tests.We also characterized the underlying mechanisms both invitro and invivo through molecular simulations,signaling detections,gene expression regulation assessments[including dual-luciferase reporter and chromatin immunoprecipitation(ChIP)assays],primary cultures or co-cultures of neutrophils and oligodendrocytes,intracellular iron,and lipid hydroperoxide concentration measurements,as well as forkhead box protein O1(FOXO1)conditional knockout mice.Results:We identified that high expression of the FOXO1 protein was induced in neutrophils after TBI both in TBI patients and the TBI mouse model.Infiltration of these FOXO1high neutrophils in the brain was detected not only in the acute phase but also in the chronic phase post-TBI,aggravating acute brain inflammatory damage and promoting late TBI-induced depression.In the acute stage,FOXO1 upregulated cytoplasmic Versican(VCAN)to interact with the apoptosis regulator B-cell lymphoma-2(BCL-2)-associated X protein(BAX),suppressing the mitochondrial translocation of BAX,which mediated the antiapoptotic effect companied with enhancing interleukin-6(IL-6)production of FOXO1high neutrophils.In the chronic stage,the“FOXO1-transferrin receptor(TFRC)”mechanism contributes to FOXO1high neutrophil ferroptosis,disturbing the iron homeostasis of oligodendrocytes and inducing a reduction in myelin basic protein,which contributes to the progression of late depression after TBI.Conclusions:FOXO1high neutrophils represent a novel neutrophil phenotype that emerges in response to acute and chronic TBI,which provides insight into the heterogeneity,reprogramming activity,and versatility of neutrophils in TBI.
基金Supported by the Science and Technology Programme of Guangzhou City,No.202201020341.
文摘BACKGROUND The self-assembly of solid organs from stem cells has the potential to greatly expand the applicability of regenerative medicine.Stem cells can self-organise into microsized organ units,partially modelling tissue function and regeneration.Dental pulp organoids have been used to recapitulate the processes of tooth development and related diseases.However,the lack of vasculature limits the utility of dental pulp organoids.AIM To improve survival and aid in recovery after stem cell transplantation,we demonstrated the three-dimensional(3D)self-assembly of adult stem cell-human dental pulp stem cells(hDPSCs)and endothelial cells(ECs)into a novel type of spheroid-shaped dental pulp organoid in vitro under hypoxia and conditioned medium(CM).METHODS During culture,primary hDPSCs were induced to differentiate into ECs by exposing them to a hypoxic environment and CM.The hypoxic pretreated hDPSCs were then mixed with ECs at specific ratios and conditioned in a 3D environment to produce prevascularized dental pulp organoids.The biological characteristics of the organoids were analysed,and the regulatory pathways associated with angiogenesis were studied.RESULTS The combination of these two agents resulted in prevascularized human dental pulp organoids(Vorganoids)that more closely resembled dental pulp tissue in terms of morphology and function.Single-cell RNA sequencing of dental pulp tissue and RNA sequencing of Vorganoids were integrated to analyse key regulatory pathways associated with angiogenesis.The biomarkers forkhead box protein O1 and fibroblast growth factor 2 were identified to be involved in the regulation of Vorganoids.CONCLUSION In this innovative study,we effectively established an in vitro model of Vorganoids and used it to elucidate new mechanisms of angiogenesis during regeneration,facilitating the development of clinical treatment strategies.
基金Project supported by the National Natural Science Foundation of China (No. 30771553)the Basic Research Foundation for Science and Technology of Nanjing Agricultural University,China
文摘The O subfamily of forkhead box(FoxO) proteins is the downstream effector of the insulin-like growth factor-1/phosphoinositide 3-kinase/protein kinase B(IGF-1/PI3K/PKB) signal pathway.The objective of the present study was to examine the expressions of three members of FoxO proteins,FoxO1,FoxO3a,and FoxO4 in the duodenum of Sprague-Dawley rats at different ages.The result demonstrated that the expression of FoxO4 in rat duodenum showed an age-dependent manner.At Day 21,there were no detectable localization and expression of FoxO4 in the duodenum,while,at Months 2 and 6,localization and expression of FoxO4 were distinct.In addition,FoxO4 staining was primarily concentrated in the cell nuclei of the lamina propria around the intestinal gland of the duodenum in 2-month-old rats,but was not detectable in the same area in 6-month-old rats.Our results showed also that although FoxO3a existed in the cytoplasm of the lamina propria at a low level at the 2-and 6-month marks,it was still not detectable at Day 21.Besides,FoxO1 was not detectable in all parts and stages.Taken together,our findings suggested that the cell-specific and age-dependent expressional patterns of FoxO4 and FoxO3a proteins in the duodenum play some roles in the development and growth performance of the rat duodenum.
基金supported by the National Natural Science Foundation of China grant (NSFC81970247)。
文摘Background:Administration of propofol,an intravenous anesthetic with antioxidant property,immediately at the onset of post-ischemic reperfusion(propofol postconditioning,P-PostC) has been shown to confer cardioprotection against ischemia–reperfusion(I/R) injury,while the underlying mechanism remains incompletely understood.The forkhead box O(FoxO) transcription factors are reported to play critical roles in activating cardiomyocyte survival signaling throughout the process of cellular injuries induced by oxidative stress and are also involved in hypoxic postconditioning mediated neuroprotection,however,the role of FoxO in postconditioning mediated protection in the heart and in particular in high glucose condition is unknown.Methods:Rat heart-derived H9c2 cells were exposed to high glucose(HG) for 48 h,then subjected to hypoxia/reoxygenation(H/R,composed of 8 h of hypoxia followed by 12 h of reoxygenation) in the absence or presence of postconditioning with various concentrations of propofol(P-PostC) at the onset of reoxygenation.After having identified the optical concentration of propofol,H9c2 cells were subjected to H/R and P-PostC in the absence or presence of FoxO1 or FoxO3a gene silencing to explore their roles in P-PostC mediated protection against apoptotic and autophagic cell deaths under hyperglycemia.Results:The results showed that HG with or without H/R decreased cell viability,increased lactate dehydrogenase(LDH) leakage and the production of reactive oxygen species(ROS) in H9c2 cells,all of which were significantly reversed by propofol(P-PostC),especially at the concentration of 25 μmol/L(P25)(P<0.05,NC vs.HG;HG vs.HG+HR;HG+HR+P12.5 or HG+HR+P25 or HG+HR+P50 vs.HG+HR).Moreover,we found that propofol(P25) decreased H9c2 cells apoptosis and autophagy that were concomitant with increased FoxO1 and FoxO3a expression(P<0.05,HG+HR+P25 vs.HG+HR).The protective effects of propofol(P25) against H/R injury were reversed by silencing FoxO1 or FoxO3a(P<0.05,HG+HR+P25 vs.HG+HR+P25+siRNA-1 or HG+HR+P25+siRNA-5).Conclusions:It is concluded that propofol postconditioning attenuated H9c2 cardiac cells apoptosis and autophagy induced by H/R injury through upregulating FoxO1 and FoxO3a under hyperglycemia.
文摘Objective To investigate miR-183-5p targeting to forkhead box protein O1(FOXO1)and its corresponding effect on the proliferation,migration,invasion,and epithelial-mesenchymal transition(EMT)of non-small cell lung cancer(NSCLC)cells.Methods NSCLC tissues and adjacent normal tissues from 60 patients with NSCLC adenocarcinoma were obtained via pathological biopsy or intraoperative resection.Several cell lines were cultured in vitro,including the human normal lung epithelial cell line BEAS-2B and human NSCLC cell lines A549,SPCA-1,PC-9,and 95-D.miR-183-5p and FOXO1 mRNA expression in tissues and cells were detected by qRT-PCR;the corresponding correlations in NSCLC tissues were analyzed using the Pearson test,and the relationship between miR-183-5p expression and clinicopathological parameters was analyzed.The miR-183-5p-mediated regulation of FOXO1 was verified by bioinformatics prediction alongside double luciferase,RNA-binding protein immunoprecipitation(RIP)assay,and pull-down experiments.A549 cells were divided into control,anti-miR-NC,anti-miR-183-5p,miR-NC,miR-183-5p,miR-183-5p+pcDNA3.1,and miR-183-5p+pcDNA3.1-FOXO1 groups.Cell proliferation,invasion,migration,apoptosis,and cell cycle distribution were detected using an MTT assay,clone formation assay,Transwell assay,scratch test,and flow cytometry,respectively.The expression of EMT-related proteins in the cells was analyzed by western blotting.The effect of miR-185-3p silencing on the development of transplanted tumors was detected by analyzing tumor formation in nude mice.Results miR-183-5p expression was significantly higher in NSCLC tissues and cells than in adjacent normal tissues,whereas FOXO1 mRNA expression was significantly down-regulated.There was a significant negative correlation between miR-183-5p and FOXO1 mRNA in NSCLC tissues(P<0.05).Additionally,the expression of miR-183-5p was significantly correlated with tumor size,tumor differentiation,and tumor-node-metastasis stage in patients with NSCLC(P<0.05).miR-183-5p targeted and inhibited FOXO1 expression.Compared to the anti-miR-NC group,the cell proliferation,scratch healing rate,N-cadherin and vimentin protein expression,and the proportion of S phase cells were significantly lower in the anti-miR-183-5p group,whereas the protein expression of E-cadherin andα-catenin and the proportion of G0/G1 phase cells were significantly higher;additionally,the frequency of colony formation and invasion were significantly lower in the anti-miR-183-5p group(P<0.05).Compared to the miR-NC group,the cell proliferation,scratch healing rate,N-cadherin and vimentin protein expression,and the proportion of S phase cells in the miR-183-5p group were significantly higher,whereas the E-cadherin andα-catenin protein expression and the proportion of G0/G1 phase cells were significantly lower;furthermore,the frequency of colony formation and invasion were significantly higher in the miR-183-5p group(P<0.05).Compared with the miR-183-5p+pcDNA3.1 group,the OD value,scratch healing rate,N-cadherin and vimentin protein expression,and the proportion of S phase cells were significantly lower in the miR-183-5p+pcDNA3.1-FOXO1 group,whereas E-cadherin andα-catenin protein expression and the proportion of G0/G1 phase cells were significantly higher;additionally,the frequency of colony formation and invasion was significantly lower in the miR-183-5p+pcDNA3.1-FOXO1 group(P<0.05).Overall,silencing miR-185-3p inhibited the growth of transplanted tumors and promoted FOXO1 expression.Conclusion Overexpression of miR-183-5p can inhibit apoptosis and promote the proliferation,migration,invasion,and EMT,of NSCLC cells by down-regulating FOXO1 expression.
基金supported by the National High-Tech R&D Program of China(“863”Program)(2009AA22704)the National Natural Science Foundation of China(30873089,81173129)+3 种基金the Program for Changjiang Scholars and Innovative Research Team in University(IRT0946)the Open Foundation of Innovative Platform in University of Hunan Province of China(10K078)the Science and Technology Plan Key Grant of Hunan Province of China(2009TP40682)the Fundamental Research Funds for the Central Universities(201023100001)
文摘目的:在细胞水平研究烟酰胺单核苷酸(nicotinamide mononucleotide,NMN)对胰岛素分泌的调节作用及其对与胰岛素分泌相关的重要转录因子胰十二指肠同源盒基因(pancreatic and duodenalhomeobox-1,PDX-1)和分叉头框家族转录因子1(forkhead box-containing protein O-1,FoxO1)基因表达的影响。方法:采用大鼠胰岛素ELISA试剂盒检测RIN-m5f细胞胰岛素分泌水平。用Real-time PCR检测RIN-m5f细胞PDX-1和FoxO1的mRNA表达水平。用Western印迹检测RIN-m5f细胞PDX-1蛋白表达水平。结果:用瑞格列奈10 nmol/L+NMN 100μmol/L处理RIN-m5f细胞48 h,与空白对照及DMSO对照组相比,胰岛素分泌量均显著增高(P<0.05);与NMN 50μmol/L组比较,胰岛素分泌量的增高也有统计学意义(P<0.05)。10,50和100μmol/L的NMN作用RIN-m5f细胞36 h,PDX-1的mRNA表达量均上调(依次为P<0.05,P<0.01,P<0.001)。100μmol/L剂量组与10μmol/L和50μmol/L剂量组比较差异也有统计学意义(P<0.001)。50,100和200μmol/L的NMN作用RIN-m5f细胞36或48 h,PDX-1的蛋白表达量与对照组比较差异无统计学意义(P>0.05)。结论:NMN可以调控RIN-m5f细胞中胰岛素的分泌及PDX-1的mRNA表达水平。
文摘目的探讨头框转录因子O家族4(class O of forkhead box transcriptionfactor 4,FOXO4)对喉癌细胞增殖凋亡能力的影响。方法应用Western blot法检测喉癌组织及对应癌旁组织中FOXO4的表达水平。细胞转染FOXO4过表达载体(p-EGFP-C1/FOXO4组)和空载体(p-EGFP-C1组),同时设置未转染组,未转染组中只加入转染试剂。Western blot法检测转染后细胞中FOXO4蛋白水平。四甲基偶氮唑蓝(MTT)检测细胞增殖,流式细胞术检测细胞凋亡,Western blot检测细胞中活化的含半胱氨酸的天冬氨酸蛋白水解酶3(Cleaved Caspase-3)、Caspase-3、活化的含半胱氨酸的天冬氨酸蛋白水解酶9(Cleaved Caspase-9)、Caspase-9、β-连环蛋白(β-catenin)、Wnt1表达水平。用Wnt/β-catenin信号通路激活剂作用于转染p-EGFP-C1/FOXO4后的喉癌细胞(激活剂组),检测细胞增殖、凋亡情况。结果 FOXO4在喉癌组织中表达水平明显低于癌旁组织(P=0.000)。p-EGFP-C1/FOXO4组细胞中FOXO4表达水平明显高于未转染组(P=0.000)。p-EGFP-C1/FOXO4组细胞存活率及β-catenin、Wnt1水平明显低于未转染组(P=0.002,P=0.004,P=0.006),细胞凋亡率及Cleaved Caspase-3、Caspase-3、Cleaved Caspase-9、C a s p a s e-9表达水平均明显高于未转染组(P=0.0 0 2,P=0.001,h P<0.05,P=0.004,j P<0.05)。Wnt/β-catenin信号通路激活剂可以部分逆转FOXO4抑增殖和促凋亡作用。结论 FOXO4能够促进人喉癌细胞凋亡,抑制喉癌细胞增殖,作用机制可能与Wnt/β-catenin信号通路有关。