Plant MYB transcription factors(TFs) play crucial roles in regulating the biosynthesis of flavonoids but current analysis on their role in Zanthoxylum bungeanum Maxim.(ZBM) is far from comprehensive. In this study, we...Plant MYB transcription factors(TFs) play crucial roles in regulating the biosynthesis of flavonoids but current analysis on their role in Zanthoxylum bungeanum Maxim.(ZBM) is far from comprehensive. In this study, we identified 270 MYB genes in ZBM and divided them into four subfamilies. The R2 R3-MYB(ZbMYB) category contained 251 genes and was classified into 33 subfamilies according to their phylogenetic results and sequence similarity. These subfamilies included 24 subgroups containing both MYBs of ZBM plants and AtMYBs, and nine subgroups containing only ZBM MYBs or AtMYBs. ZbMYBs with similar functions clustered into the same subgroup, indicating functional conservation. The subcellular localization analysis predicted that most ZbMYB genes were found in the nucleus. The transposed duplications appeared to play a major role in the expansion of the MYB gene family in ZBM. Through phylogenetic analysis and transcriptome profiling, it was found that 28 ZbMYB genes may regulate the biosynthesis of flavonoids in ZBM, and these genes expression presented distinct temporal and spatial expression patterns. In different fruit development stages of ZBM, the expression patterns of EVM0042160 and EVM0033809 genes obtained by qRT-PCR analysis are very similar to the flavonoid and anthocyanin content curves in ZBM. Further correlation analysis showed that the content of flavonoids in different fruit development stages and the transcript abundance levels of 28 ZbMYB genes have different degrees of correlation relationship. These results indicated that the ZbMYB genes might be involved in the flavonoid metabolic pathway. This comprehensive and systematic analysis of MYB family genes provided a solid foundation for further functional analysis of MYB TFs in ZBM.展开更多
Radish(Raphanus sativus L.), an important root vegetable crop of the Brassicaceae family, has a high level of anthocyanin accumulation in its pigment root tissues. It was reported that MYB transcription factors(TFs) p...Radish(Raphanus sativus L.), an important root vegetable crop of the Brassicaceae family, has a high level of anthocyanin accumulation in its pigment root tissues. It was reported that MYB transcription factors(TFs) play vital roles in plant development and anthocyanin metabolism, and the PAP1/2 could promote expression of anthocyanin biosynthesis genes. In this study, a total of 187 radish MYB genes(Rs MYBs) were identified in the radish genome and clustered into 32 subfamilies. Among them, 159 Rs MYBs were localized on nine radish chromosomes. Interestingly, 14 Rs MYBs exhibited differential expression profiles in different taproot developmental stages among four differently colored radish lines. A number of Rs MYBs were highly expressed in the pigmented root tissues at the maturity stage, several genes including Rs MYB41, Rs MYB117, and Rs MYB132 being homologous to PAP1/2, showed high expression levels in the red skin of NAU-YH(red skin-white flesh) taproot, while Rs MYB65 and Rs MYB159 were highly expressed in the purple root skin of NAU-YZH(purple skin-red flesh), indicating that these Rs MYBs might positively regulate the process of anthocyanin accumulation in radish taproot. These results would provide valuable information for further functional characterization of Rs MYBs, and facilitate clarifying the molecular mechanism underlying anthocyanin biosynthesis in radish.展开更多
Although a few cases of genetic epistasis in plants have been reported, the combined analysis of genetically phenotypic segregation and the related molecular mechanism remains rarely studied. Here, we have identified ...Although a few cases of genetic epistasis in plants have been reported, the combined analysis of genetically phenotypic segregation and the related molecular mechanism remains rarely studied. Here, we have identified a gene(named GaPC) controlling petal coloration in Gossypium arboreum and following a heritable recessive epistatic genetic model. Petal coloration is controlled by a single dominant gene,GaPC. A loss-of-function mutation of GaPC leads to a recessive gene Gapc that masks the phenotype of other color genes and shows recessive epistatic interactions. Map-based cloning showed that GaPC encodes an R2R3-MYB transcription factor. A 4814-bp long terminal repeat retrotransposon insertion at the second exon led to GaPC loss of function and disabled petal coloration. GaPC controlled petal coloration by regulating the anthocyanin and flavone biosynthesis pathways. Expression of core genes in the phenylpropanoid and anthocyanin pathways was higher in colored than in white petals. Petal color was conferred by flavonoids and anthocyanins, with red and yellow petals rich in anthocyanin and flavonol glycosides, respectively. This study provides new insight on molecular mechanism of recessive epistasis,also has potential breeding value by engineering GaPC to develop colored petals or fibers for multifunctional utilization of cotton.展开更多
Anthocyanin is abundant in a few vegetables,including eggplant.It protects plants from abiotic stress and benefits human health,making the research of anthocyanin biosynthesis increasingly important.Flowering time is ...Anthocyanin is abundant in a few vegetables,including eggplant.It protects plants from abiotic stress and benefits human health,making the research of anthocyanin biosynthesis increasingly important.Flowering time is an important reference for judging reproduction and adaptability,which can guide plant production.In this study,SmbHLH13 from eggplant was identified.Yeast one-hybrid and dual-luciferase assays showed that SmbHLH13 binded and activated the expression of structural genes SmCHS and SmF3H in anthocyanin biosynthesis and it also was bound to the promoter of the key gene SmFT in flowering.Furthermore,genetic transformation of Arabidopsis revealed that overexpression of SmbHLH13 enhanced anthocyanin accumulation and delayed flowering.These results demonstrated that SmbHLH13 might promote anthocyanin accumulation through positive regulation of SmCHS and SmF3H.Moreover,SmbHLH13 might have a role in delaying eggplant flowering.展开更多
Camptotheca acuminata produces camptothecin(CPT),a monoterpene indole alkaloid(MIA)that is widely used in the treatment of lung,colorectal,cervical,and ovarian cancers.Its biosynthesis pathway has attracted significan...Camptotheca acuminata produces camptothecin(CPT),a monoterpene indole alkaloid(MIA)that is widely used in the treatment of lung,colorectal,cervical,and ovarian cancers.Its biosynthesis pathway has attracted significant attention,but the regulation of CPT biosynthesis by the APETALA2/ethylene-responsive factor(AP2/ERF)transcription factors(TFs)remains unclear.In this study,a systematic analysis of the AP2/ERF TFs family in C.acuminata was performed,including phylogeny,gene structure,conserved motifs,and gene expression profiles in different tissues and organs(immature bark,cotyledons,young flower,immature fruit,mature fruit,mature leaf,roots,upper stem,and lower stem)of C.acuminata.A total of 198 AP2/ERF genes were identified and divided into five relatively conserved subfamilies,including AP2(26 genes),DREB(61 genes),ERF(92 genes),RAV(18 genes),and Soloist(one gene).The combination of gene expression patterns in different C.acuminata tissues and organs,the phylogenetic tree,the co-expression analysis with biosynthetic genes,and the analysis of promoter sequences of key enzymes genes involved in CPT biosynthesis pathways revealed that eight AP2/ERF TFs in C.acuminata might be involved in CPT synthesis regulation,which exhibit relatively high expression levels in the upper stem or immature bark.Among these,four genes(Cac AP2/ERF123,Cac AP2/ERF125,Cac AP2/ERF126,and Cac AP2/ERF127)belong to the ERF–B2 subgroup;two genes(Cac AP2/ERF149 and Cac AP2/ERF152)belong to the ERF–B3 subgroup;and two more genes(Cac AP2/ERF095 and Cac AP2/ERF096)belong to the DREB–A6 subgroup.These results provide a foundation for future functional characterization of the AP2/ERF genes to enhance the biosynthesis of CPT compounds of C.acuminata.展开更多
In filamentous fungi,nitrogen metabolism is repressed by GATA-type zinc finger transcription factors.Nitrogen metabolite repression has been found to affect antibiotic production,but the mechanism is still poorly unde...In filamentous fungi,nitrogen metabolism is repressed by GATA-type zinc finger transcription factors.Nitrogen metabolite repression has been found to affect antibiotic production,but the mechanism is still poorly understood.AcareB,encoding a homologue of fungal GATA-type regulatory protein,was cloned from Acremonium chrysogenum.Gene disruption and genetic complementation demonstrated that AcareB plays a key role in utilization of ammonium,glutamine and urea.In addition,significant reduction of cephalosporin production in the AcareB disruption mutant indicated that AcareB is important for cephalosporin production.In consistence with it,the transcriptional level of cephalosporin biosynthetic genes was significantly decreased in the AcareB disruption mutant.Electrophoretic mobility shift assay showed that AcAREB directly bound to the intergenic regions of pcbAB-pcbC,cefD1-cefD2 and cefEF-cefG.Sequence analysis showed that all the AcAREB binding sites contained the consensus GATA elements.AcareB is negatively autoregulated during cephalosporin production.Moreover,another GATA zinc-finger protein encoded by AcareA positively regulates the transcription of AcareB.However,AcareB does not regulate the transcription of AcareA.These results indicated that AcAREB plays an important role in both regulation of nitrogen metabolism and cephalosporin production in A.chrysogenum.展开更多
Green petals pose a challenge for pollinators to distinguish flowers from leaves,but they are valuable as a specialty flower trait.However,little is understood about the molecular mechanisms that underlie the developm...Green petals pose a challenge for pollinators to distinguish flowers from leaves,but they are valuable as a specialty flower trait.However,little is understood about the molecular mechanisms that underlie the development of green petals.Here,we report that CINCINNATA(CIN)-like TEOSINTE BRANCHED 1/CYCLOIDEA/PCF(TCP)proteins play key roles in the control of petal color.The septuple tcp2/3/4/5/10/13/17 mutant produced flowers with green petals due to chlorophyll accumulation.Expression of TCP4 complemented the petal phenotype of tcp2/3/4/5/10/13/17.We found that chloroplasts were converted into leucoplasts in the distal parts of wild-type petals but not in the proximal parts during flower development,whereas plastid conversion was compromised in the distal parts of tcp2/3/4/5/10/13/17 petals.TCP4 and most CIN-like TCPs were predominantly expressed in distal petal regions,consistent with the green–white pattern in wild-type petals and the petal greening observed in the distal parts of tcp2/3/4/5/10/13/17 petals.RNA-sequencing data revealed that most chlorophyll biosynthesis genes were downregulated in the white distal parts of wild-type petals,but these genes had elevated expression in the distal green parts of tcp2/3/4/5/10/13/17 petals and the green proximal parts of wild-type petals.We revealed that TCP4 repressed chlorophyll biosynthesis by directly binding to the promoters of PROTOCHLOROPHYLLIDE REDUCTASE(PORB),DIVINYL REDUCTASE(DVR),and SUPPRESSOR OF OVEREXPRESSION OF CO 1(SOC1),which are known to promote petal greening.We found that the conversion of chloroplasts to leucoplasts and the green coloration in the proximal parts of petals appeared to be conserved among plant species.Our findings uncover a major molecular mechanism that underpins the formation of petal color patterns and provide a foundation for the breeding of plants with green flowers.展开更多
Artemisinin, also known as qinghaosu, a sesquiterpene endoperoxide lactone isolated from the Chinese medicinal plant Artemisia annua L., is the most effective antimalarial drug which has saved millions of lives.Due to...Artemisinin, also known as qinghaosu, a sesquiterpene endoperoxide lactone isolated from the Chinese medicinal plant Artemisia annua L., is the most effective antimalarial drug which has saved millions of lives.Due to its great antimalarial activity and low content in wild A. annua plants, researches focused on enhancing the artemisin yield in plants became a hotspot. Several families of transcription factors have been reported to participate in regulating the biosynthesis and accumulation of artemisinin.In this review, we summarize recent investigations in these fields, with emphasis on newly identified transcription factors and their functions in artemisinin biosynthesis regulation, and provide new insight for further research.展开更多
Plants produce and accumulate triacylglycerol(TAG)in their seeds as an energy reservoir to support the processes of seed germination and seedling development.Plant seed oils are vital not only for the human diet but a...Plants produce and accumulate triacylglycerol(TAG)in their seeds as an energy reservoir to support the processes of seed germination and seedling development.Plant seed oils are vital not only for the human diet but also as renewable feedstocks for industrial use.TAG biosynthesis consists of two major steps:de novo fatty acid biosynthesis in the plastids and TAG assembly in the endoplasmic reticulum.The latest advances in unraveling transcriptional regulation have shed light on the molecular mechanisms of plant oil biosynthesis.We summarize recent progress in understanding the regulatory mechanisms of wellcharacterized and newly discovered transcription factors and other types of regulators that control plant fatty acid biosynthesis.The emerging picture shows that plant oil biosynthesis responds to developmental and environmental cues that stimulate a network of interacting transcriptional activators and repressors,which in turn fine-tune the spatiotemporal regulation of the pathway genes.展开更多
OBJECTIVE:To primarily explore the effect and mechanism of Wenshen Yangxue decoction(温肾养血方)in promoting follicular development in elderly female mice.METHODS:Fifty Institute of Cancer Research mice were randomly ...OBJECTIVE:To primarily explore the effect and mechanism of Wenshen Yangxue decoction(温肾养血方)in promoting follicular development in elderly female mice.METHODS:Fifty Institute of Cancer Research mice were randomly divided into blank,controlled ovarian hyperstimulation(COH),low-dose Wenshen Yangxue decoction,medium-dose Wenshen Yangxue decoction,and high-dose Wenshen Yangxue decoction groups,with 10 mice in each group.The number of ovulations,number of fertilizations,mitochondrial adenosine triphosphate(ATP)level,and mitochondrial DNA(mt DNA)of oocytes in each group were compared.Reverse transcriptionpolymerase chain reaction and Western blotting were used to detect the m RNA and protein expression levels of silent information regulator 3(Sirt3)and forkhead transcription factor O13a(FOXO3a).RESULTS:Wenshen Yangxue decoction significantly increased the number of ovulations in mice(P<0.05)and promoted the formation of fertilized eggs.The ATP level and mt DNA copy number of mice oocytes in the highdose groups were significantly higher than those in the COH group(P<0.05).Wenshen Yangxue decoction significantly increased the m RNA and protein levels of Sirt3 and FOXO3a in mouse oocytes.CONCLUSION:Wenshen Yangxue decoction promoted the development of follicles in elderly female mice,increased the number of ovulations and improved fertility.Its mechanism may be related to increased mitochondrial energy metabolism and regulation of the Sirt3/FOXO3a pathway.展开更多
Cryptococcus neoformans and its sister species Cryptococcus deuterogattii are important human fungal pathogens.Despite their phylogenetically close relationship,these two Cryptococcus pathogens are greatly different i...Cryptococcus neoformans and its sister species Cryptococcus deuterogattii are important human fungal pathogens.Despite their phylogenetically close relationship,these two Cryptococcus pathogens are greatly different in their clinical characteristics.However,the determinants underlying the regulatory differences of their pathogenicity remain largely unknown.Here,we show that the forkhead transcription factor Hcm1 promotes infection in C.neoformans but not in C.deuterogattii.Monitoring in vitro and in vivo fitness outcomes of multiple clinical isolates from the two pathogens indicates that Hcm1 mediates pathogenicity in C.neoformans through its key involvement in oxidative stress defense.By comparison,Hcm1 is not critical for antioxidation in C.deuterogattii.Furthermore,we identified SRX1,which encodes the antioxidant sulfiredoxin,as a conserved target of Hcm1 in two Cryptococcus pathogens.Like HCM1,SRX1 had a greater role in antioxidation in C.neoformans than in C.deuterogattii.Significantly,overexpression of SRX1 can largely rescue the defective pathogenicity caused by the absence of Hcm1 in C.neoformans.Conversely,Srx1 is dispensable for virulence in C.deuterogattii.Overall,our findings demonstrate that the difference in the contribution of the antioxidant sulfiredoxin to oxidative stress defense underlies the Hcm1-mediated regulatory differences of pathogenicity in two closely related pathogens.展开更多
基金financially supported by the National Key R&D Program of China(2018YFD1000605)the Project of Science and Technology Development Center,National Forestry and Grassland Administration,China(KJZXSA202025)。
文摘Plant MYB transcription factors(TFs) play crucial roles in regulating the biosynthesis of flavonoids but current analysis on their role in Zanthoxylum bungeanum Maxim.(ZBM) is far from comprehensive. In this study, we identified 270 MYB genes in ZBM and divided them into four subfamilies. The R2 R3-MYB(ZbMYB) category contained 251 genes and was classified into 33 subfamilies according to their phylogenetic results and sequence similarity. These subfamilies included 24 subgroups containing both MYBs of ZBM plants and AtMYBs, and nine subgroups containing only ZBM MYBs or AtMYBs. ZbMYBs with similar functions clustered into the same subgroup, indicating functional conservation. The subcellular localization analysis predicted that most ZbMYB genes were found in the nucleus. The transposed duplications appeared to play a major role in the expansion of the MYB gene family in ZBM. Through phylogenetic analysis and transcriptome profiling, it was found that 28 ZbMYB genes may regulate the biosynthesis of flavonoids in ZBM, and these genes expression presented distinct temporal and spatial expression patterns. In different fruit development stages of ZBM, the expression patterns of EVM0042160 and EVM0033809 genes obtained by qRT-PCR analysis are very similar to the flavonoid and anthocyanin content curves in ZBM. Further correlation analysis showed that the content of flavonoids in different fruit development stages and the transcript abundance levels of 28 ZbMYB genes have different degrees of correlation relationship. These results indicated that the ZbMYB genes might be involved in the flavonoid metabolic pathway. This comprehensive and systematic analysis of MYB family genes provided a solid foundation for further functional analysis of MYB TFs in ZBM.
基金in part supported by the National Key Research and Development Program of China (2017YFD0101806)the Open Funds of State Key Laboratory of Crop Genetics and Germplasm Enhancement, China (ZW201709)+1 种基金the Key Laboratory of Biology and Genetics Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, China (IVF201706)the Jiangsu Agricultural Science and Technology Innovation Fund, China (CX(19)3045)。
文摘Radish(Raphanus sativus L.), an important root vegetable crop of the Brassicaceae family, has a high level of anthocyanin accumulation in its pigment root tissues. It was reported that MYB transcription factors(TFs) play vital roles in plant development and anthocyanin metabolism, and the PAP1/2 could promote expression of anthocyanin biosynthesis genes. In this study, a total of 187 radish MYB genes(Rs MYBs) were identified in the radish genome and clustered into 32 subfamilies. Among them, 159 Rs MYBs were localized on nine radish chromosomes. Interestingly, 14 Rs MYBs exhibited differential expression profiles in different taproot developmental stages among four differently colored radish lines. A number of Rs MYBs were highly expressed in the pigmented root tissues at the maturity stage, several genes including Rs MYB41, Rs MYB117, and Rs MYB132 being homologous to PAP1/2, showed high expression levels in the red skin of NAU-YH(red skin-white flesh) taproot, while Rs MYB65 and Rs MYB159 were highly expressed in the purple root skin of NAU-YZH(purple skin-red flesh), indicating that these Rs MYBs might positively regulate the process of anthocyanin accumulation in radish taproot. These results would provide valuable information for further functional characterization of Rs MYBs, and facilitate clarifying the molecular mechanism underlying anthocyanin biosynthesis in radish.
基金supported by the Fundamental Research Funds for the Central Universities(KYZZ2022003)Jiangsu Collaborative Innovation Center for Modern Crop Production project (No.10)。
文摘Although a few cases of genetic epistasis in plants have been reported, the combined analysis of genetically phenotypic segregation and the related molecular mechanism remains rarely studied. Here, we have identified a gene(named GaPC) controlling petal coloration in Gossypium arboreum and following a heritable recessive epistatic genetic model. Petal coloration is controlled by a single dominant gene,GaPC. A loss-of-function mutation of GaPC leads to a recessive gene Gapc that masks the phenotype of other color genes and shows recessive epistatic interactions. Map-based cloning showed that GaPC encodes an R2R3-MYB transcription factor. A 4814-bp long terminal repeat retrotransposon insertion at the second exon led to GaPC loss of function and disabled petal coloration. GaPC controlled petal coloration by regulating the anthocyanin and flavone biosynthesis pathways. Expression of core genes in the phenylpropanoid and anthocyanin pathways was higher in colored than in white petals. Petal color was conferred by flavonoids and anthocyanins, with red and yellow petals rich in anthocyanin and flavonol glycosides, respectively. This study provides new insight on molecular mechanism of recessive epistasis,also has potential breeding value by engineering GaPC to develop colored petals or fibers for multifunctional utilization of cotton.
基金The project was supported by the National Natural Science Foundation of China(Grant No.31872944)Science and Technology Committee of Shanghai(Grant No.18391900500).
文摘Anthocyanin is abundant in a few vegetables,including eggplant.It protects plants from abiotic stress and benefits human health,making the research of anthocyanin biosynthesis increasingly important.Flowering time is an important reference for judging reproduction and adaptability,which can guide plant production.In this study,SmbHLH13 from eggplant was identified.Yeast one-hybrid and dual-luciferase assays showed that SmbHLH13 binded and activated the expression of structural genes SmCHS and SmF3H in anthocyanin biosynthesis and it also was bound to the promoter of the key gene SmFT in flowering.Furthermore,genetic transformation of Arabidopsis revealed that overexpression of SmbHLH13 enhanced anthocyanin accumulation and delayed flowering.These results demonstrated that SmbHLH13 might promote anthocyanin accumulation through positive regulation of SmCHS and SmF3H.Moreover,SmbHLH13 might have a role in delaying eggplant flowering.
基金supported by the National Key R&D Program of China(No.2019YFC1711100)the CAMS Innovation Fund for Medical Sciences(CIFMS,No.2016-I2M-3-016)。
文摘Camptotheca acuminata produces camptothecin(CPT),a monoterpene indole alkaloid(MIA)that is widely used in the treatment of lung,colorectal,cervical,and ovarian cancers.Its biosynthesis pathway has attracted significant attention,but the regulation of CPT biosynthesis by the APETALA2/ethylene-responsive factor(AP2/ERF)transcription factors(TFs)remains unclear.In this study,a systematic analysis of the AP2/ERF TFs family in C.acuminata was performed,including phylogeny,gene structure,conserved motifs,and gene expression profiles in different tissues and organs(immature bark,cotyledons,young flower,immature fruit,mature fruit,mature leaf,roots,upper stem,and lower stem)of C.acuminata.A total of 198 AP2/ERF genes were identified and divided into five relatively conserved subfamilies,including AP2(26 genes),DREB(61 genes),ERF(92 genes),RAV(18 genes),and Soloist(one gene).The combination of gene expression patterns in different C.acuminata tissues and organs,the phylogenetic tree,the co-expression analysis with biosynthetic genes,and the analysis of promoter sequences of key enzymes genes involved in CPT biosynthesis pathways revealed that eight AP2/ERF TFs in C.acuminata might be involved in CPT synthesis regulation,which exhibit relatively high expression levels in the upper stem or immature bark.Among these,four genes(Cac AP2/ERF123,Cac AP2/ERF125,Cac AP2/ERF126,and Cac AP2/ERF127)belong to the ERF–B2 subgroup;two genes(Cac AP2/ERF149 and Cac AP2/ERF152)belong to the ERF–B3 subgroup;and two more genes(Cac AP2/ERF095 and Cac AP2/ERF096)belong to the DREB–A6 subgroup.These results provide a foundation for future functional characterization of the AP2/ERF genes to enhance the biosynthesis of CPT compounds of C.acuminata.
基金supported by the National Natural Science Foundation of China(31670091 and 31470177)
文摘In filamentous fungi,nitrogen metabolism is repressed by GATA-type zinc finger transcription factors.Nitrogen metabolite repression has been found to affect antibiotic production,but the mechanism is still poorly understood.AcareB,encoding a homologue of fungal GATA-type regulatory protein,was cloned from Acremonium chrysogenum.Gene disruption and genetic complementation demonstrated that AcareB plays a key role in utilization of ammonium,glutamine and urea.In addition,significant reduction of cephalosporin production in the AcareB disruption mutant indicated that AcareB is important for cephalosporin production.In consistence with it,the transcriptional level of cephalosporin biosynthetic genes was significantly decreased in the AcareB disruption mutant.Electrophoretic mobility shift assay showed that AcAREB directly bound to the intergenic regions of pcbAB-pcbC,cefD1-cefD2 and cefEF-cefG.Sequence analysis showed that all the AcAREB binding sites contained the consensus GATA elements.AcareB is negatively autoregulated during cephalosporin production.Moreover,another GATA zinc-finger protein encoded by AcareA positively regulates the transcription of AcareB.However,AcareB does not regulate the transcription of AcareA.These results indicated that AcAREB plays an important role in both regulation of nitrogen metabolism and cephalosporin production in A.chrysogenum.
基金supported by the National Science Fund for Distinguished Young Scholars of China(grant 31725005)the Science Fund for the Creative Research Groups of the National Natural Science Foundation of China(grant 31621001)the National Key R&D Program of China(2018YFE0204700).
文摘Green petals pose a challenge for pollinators to distinguish flowers from leaves,but they are valuable as a specialty flower trait.However,little is understood about the molecular mechanisms that underlie the development of green petals.Here,we report that CINCINNATA(CIN)-like TEOSINTE BRANCHED 1/CYCLOIDEA/PCF(TCP)proteins play key roles in the control of petal color.The septuple tcp2/3/4/5/10/13/17 mutant produced flowers with green petals due to chlorophyll accumulation.Expression of TCP4 complemented the petal phenotype of tcp2/3/4/5/10/13/17.We found that chloroplasts were converted into leucoplasts in the distal parts of wild-type petals but not in the proximal parts during flower development,whereas plastid conversion was compromised in the distal parts of tcp2/3/4/5/10/13/17 petals.TCP4 and most CIN-like TCPs were predominantly expressed in distal petal regions,consistent with the green–white pattern in wild-type petals and the petal greening observed in the distal parts of tcp2/3/4/5/10/13/17 petals.RNA-sequencing data revealed that most chlorophyll biosynthesis genes were downregulated in the white distal parts of wild-type petals,but these genes had elevated expression in the distal green parts of tcp2/3/4/5/10/13/17 petals and the green proximal parts of wild-type petals.We revealed that TCP4 repressed chlorophyll biosynthesis by directly binding to the promoters of PROTOCHLOROPHYLLIDE REDUCTASE(PORB),DIVINYL REDUCTASE(DVR),and SUPPRESSOR OF OVEREXPRESSION OF CO 1(SOC1),which are known to promote petal greening.We found that the conversion of chloroplasts to leucoplasts and the green coloration in the proximal parts of petals appeared to be conserved among plant species.Our findings uncover a major molecular mechanism that underpins the formation of petal color patterns and provide a foundation for the breeding of plants with green flowers.
基金supported by National High Technology Research and Development Program(2011AA100605)Shanghai Key Discipline Cultivation and Construction Project(Horticulture+1 种基金ZXDF150005)Shanghai Jiao Tong University Agri-Engineering Program(AF1500028)
文摘Artemisinin, also known as qinghaosu, a sesquiterpene endoperoxide lactone isolated from the Chinese medicinal plant Artemisia annua L., is the most effective antimalarial drug which has saved millions of lives.Due to its great antimalarial activity and low content in wild A. annua plants, researches focused on enhancing the artemisin yield in plants became a hotspot. Several families of transcription factors have been reported to participate in regulating the biosynthesis and accumulation of artemisinin.In this review, we summarize recent investigations in these fields, with emphasis on newly identified transcription factors and their functions in artemisinin biosynthesis regulation, and provide new insight for further research.
基金This work was supported by Ministry of Education(MOE)of Singapore Tier 1 to W.M.(RG29/20)MOE of Singapore Tier 2 to W.M.(MOE-T2EP30220-0011)+2 种基金the National Key R&D Program of China to L.Y.(2019YFC1711100)the Hubei Hongshan Laboratory Research Fund to L.G.(2021HSZD004)the HZAU-AGIS Cooperation Fund to L.G.(SZYJY2021004).
文摘Plants produce and accumulate triacylglycerol(TAG)in their seeds as an energy reservoir to support the processes of seed germination and seedling development.Plant seed oils are vital not only for the human diet but also as renewable feedstocks for industrial use.TAG biosynthesis consists of two major steps:de novo fatty acid biosynthesis in the plastids and TAG assembly in the endoplasmic reticulum.The latest advances in unraveling transcriptional regulation have shed light on the molecular mechanisms of plant oil biosynthesis.We summarize recent progress in understanding the regulatory mechanisms of wellcharacterized and newly discovered transcription factors and other types of regulators that control plant fatty acid biosynthesis.The emerging picture shows that plant oil biosynthesis responds to developmental and environmental cues that stimulate a network of interacting transcriptional activators and repressors,which in turn fine-tune the spatiotemporal regulation of the pathway genes.
基金Supported by Grants from the Beijing Natural Science Foundation:Study on the Effect of Wenshen Yangxue Recipe on Improving the Quality of Oocytes in Aged Female Mice based on Sirt3/FoxO3a Pathway(No.7192068)National Natural Science Foundation of China:Research on the Pathogenesis of Methyl Group Deletion Caused by One Novel Mutation of BRCA2 Gene in Patients from Families at Risk of Hereditary Ovarian Cancer and Breast Cancer(No.8972444)
文摘OBJECTIVE:To primarily explore the effect and mechanism of Wenshen Yangxue decoction(温肾养血方)in promoting follicular development in elderly female mice.METHODS:Fifty Institute of Cancer Research mice were randomly divided into blank,controlled ovarian hyperstimulation(COH),low-dose Wenshen Yangxue decoction,medium-dose Wenshen Yangxue decoction,and high-dose Wenshen Yangxue decoction groups,with 10 mice in each group.The number of ovulations,number of fertilizations,mitochondrial adenosine triphosphate(ATP)level,and mitochondrial DNA(mt DNA)of oocytes in each group were compared.Reverse transcriptionpolymerase chain reaction and Western blotting were used to detect the m RNA and protein expression levels of silent information regulator 3(Sirt3)and forkhead transcription factor O13a(FOXO3a).RESULTS:Wenshen Yangxue decoction significantly increased the number of ovulations in mice(P<0.05)and promoted the formation of fertilized eggs.The ATP level and mt DNA copy number of mice oocytes in the highdose groups were significantly higher than those in the COH group(P<0.05).Wenshen Yangxue decoction significantly increased the m RNA and protein levels of Sirt3 and FOXO3a in mouse oocytes.CONCLUSION:Wenshen Yangxue decoction promoted the development of follicles in elderly female mice,increased the number of ovulations and improved fertility.Its mechanism may be related to increased mitochondrial energy metabolism and regulation of the Sirt3/FOXO3a pathway.
基金supported by the National Key Research and Development Program of China(2021YFC2300400)[Linqi Wang],2021YFC230000[Linqi Wang],2021YFA0911300[Xiao Liu],2021YFC2100600[Xiuyun Tian]:Major Infections Diseases Such as AIDS and Viral Hepatitis Prevention and Control Technology Major Projects(2018ZX10101003[Ying Yang])and CAS Interdisciplinary Innovation Team(Linqi Wang).
文摘Cryptococcus neoformans and its sister species Cryptococcus deuterogattii are important human fungal pathogens.Despite their phylogenetically close relationship,these two Cryptococcus pathogens are greatly different in their clinical characteristics.However,the determinants underlying the regulatory differences of their pathogenicity remain largely unknown.Here,we show that the forkhead transcription factor Hcm1 promotes infection in C.neoformans but not in C.deuterogattii.Monitoring in vitro and in vivo fitness outcomes of multiple clinical isolates from the two pathogens indicates that Hcm1 mediates pathogenicity in C.neoformans through its key involvement in oxidative stress defense.By comparison,Hcm1 is not critical for antioxidation in C.deuterogattii.Furthermore,we identified SRX1,which encodes the antioxidant sulfiredoxin,as a conserved target of Hcm1 in two Cryptococcus pathogens.Like HCM1,SRX1 had a greater role in antioxidation in C.neoformans than in C.deuterogattii.Significantly,overexpression of SRX1 can largely rescue the defective pathogenicity caused by the absence of Hcm1 in C.neoformans.Conversely,Srx1 is dispensable for virulence in C.deuterogattii.Overall,our findings demonstrate that the difference in the contribution of the antioxidant sulfiredoxin to oxidative stress defense underlies the Hcm1-mediated regulatory differences of pathogenicity in two closely related pathogens.