期刊文献+
共找到3,704篇文章
< 1 2 186 >
每页显示 20 50 100
A Hybrid Optimization Approach of Single Point Incremental Sheet Forming of AISI 316L Stainless Steel Using Grey Relation Analysis Coupled with Principal Component Analysiss
1
作者 A Visagan P Ganesh 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期160-166,共7页
We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were use... We investigated the parametric optimization on incremental sheet forming of stainless steel using Grey Relational Analysis(GRA) coupled with Principal Component Analysis(PCA). AISI 316L stainless steel sheets were used to develop double wall angle pyramid with aid of tungsten carbide tool. GRA coupled with PCA was used to plan the experiment conditions. Control factors such as Tool Diameter(TD), Step Depth(SD), Bottom Wall Angle(BWA), Feed Rate(FR) and Spindle Speed(SS) on Top Wall Angle(TWA) and Top Wall Angle Surface Roughness(TWASR) have been studied. Wall angle increases with increasing tool diameter due to large contact area between tool and workpiece. As the step depth, feed rate and spindle speed increase,TWASR decreases with increasing tool diameter. As the step depth increasing, the hydrostatic stress is raised causing severe cracks in the deformed surface. Hence it was concluded that the proposed hybrid method was suitable for optimizing the factors and response. 展开更多
关键词 single point incremental forming AISI 316L taguchi grey relation analysis principal component analysis surface roughness scanning electron microscopy
下载PDF
Analyzing the Form-Finding of a Large-Span Transversely Stiffened Suspended Cable System: A Method Considering Construction Processes
2
作者 Junyu Chen Yanfei Wang +2 位作者 Ke Chen Shiqing Huang Xiaowen Xu 《World Journal of Engineering and Technology》 2024年第2期229-244,共16页
The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions... The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions. These methods are inefficient and fail to accurately control shape results. In this study, we propose a form-finding method that analyzes the load response of models under different sag and stress levels, taking into account the construction process. To analyze the system, a structural finite element model was established in ANSYS, and geometric nonlinear analysis was conducted using the Newton-Raphson method. The form-finding analysis results demonstrate that the proposed method achieves precise control of shape, with a maximum shape error ranging from 0.33% to 0.98%. Furthermore, the relationships between loads and tension forces are influenced by the deformed shape of the structures, exhibiting significant geometric nonlinear characteristics. Meanwhile, the load response analysis reveals that the stress level of the self-equilibrium state in the transversely stiffened suspended cable system is primarily governed by strength criteria, while shape is predominantly controlled by stiffness criteria. Importantly, by simulating the initial tensioning process as an initial condition, this method solves for a counterweight that satisfies the requirements and achieves a self-equilibrium state with the desired shape. The shape of the self-equilibrium state is precisely controlled by simulating the construction process. Overall, this work presents a new method for analyzing the form-finding process of large-span transversely stiffened suspended cable system, considering the construction process which was often overlooked in previous studies. 展开更多
关键词 Cable Structure Long-Span Structure form-finding analysis Finite Element Simulation Transverse Cable Stiffening System
下载PDF
Efficient slope reliability and sensitivity analysis using quantile-based first-order second-moment method 被引量:1
3
作者 Zhiyong Yang Chengchuan Yin +2 位作者 Xueyou Li Shuihua Jiang Dianqing Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4192-4203,共12页
This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are... This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis. 展开更多
关键词 Slope reliability Sensitivity analysis QUANTILE First-order second-moment method(FOSM) First-order reliability method(form)
下载PDF
Design and analysis of longitudinal–flexural hybrid transducer for ultrasonic peen forming
4
作者 Wuqin Li Yongyong Zhu +4 位作者 Xiaolong Lu Huafeng Li Ying Wei Pengwei Shang Bo Feng 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2023年第4期30-39,共10页
Ultrasonic peen forming(UPF)is an emerging technology that exhibits great superiority in both its flexible operating modes and the deep residual stress that it produces compared with conventional plastic forming metho... Ultrasonic peen forming(UPF)is an emerging technology that exhibits great superiority in both its flexible operating modes and the deep residual stress that it produces compared with conventional plastic forming methods.Although ultrasonic transducers with longitudinal vibration have been widely studied,they have seldom been incorporated into UPF devices for machining in confined spaces.To meet the requirements of this type of machining,a sandwich-type piezoelectric transducer with coupled longitudinal-flexural vibrational modes is proposed.The basic structure of the transducer is designed to obtain large vibrational amplitudes in both modes.Experimental results obtained with a prototype device demonstrate the feasibility of the proposed transducer.The measured vibrational amplitude for the working face in the longitudinal vibrational mode is 1.0μm,and electrical matching increases this amplitude by 40%.The flexural vibration characteristics of the same prototype transducer are also tested and are found to be slightly smaller than those of longitudinal mode.The resultant working strokes of the UPF impact pins reach 1.7 mm and 1.2 mm in the longitudinal and flexural modes,respectively.The forming capability of the prototype has been evaluated via 15-min machining on standard 2024-T351 aluminum plates.After UPF,an improved surface morphology with lower surface roughness is obtained.The aluminum plate test piece has an apparent upper deformation with an arc height of 0.64 mm.The measured peak value of the compressive residual stress is around 250 MPa,appearing at a depth of 100μm.The proposed longitudinal-flexural hybrid transducer thus provides a high-performance tool for plate peen forming in confined spaces. 展开更多
关键词 Ultrasonic peen forming Piezoelectric transducer Longitudinal-flexural vibrational mode Modal analysis
下载PDF
Behavior analysis and formative assessments in online oral medicine education during the COVID-19 pandemic
5
作者 Jia-Jia Ye Ye-Ke Zhao +3 位作者 Zhi-Sheng Teng Hui-Wu Ye Qin Yuan Xin Nie 《World Journal of Clinical Cases》 SCIE 2023年第21期5063-5072,共10页
BACKGROUND During the coronavirus disease 2019(COVID-19)pandemic,traditional teaching methods were disrupted and online teaching became a new topic in education reform and informatization.In this context,it is importa... BACKGROUND During the coronavirus disease 2019(COVID-19)pandemic,traditional teaching methods were disrupted and online teaching became a new topic in education reform and informatization.In this context,it is important to investigate the necessity and effectiveness of online teaching methods for medical students.This study explored stomatology education in China to evaluate the development and challenges facing the field using massive open online courses(MOOCs)for oral medicine education during the pandemic.AIM To investigate the current situation and challenges facing stomatology education in China,and to assess the necessity and effectiveness of online teaching methods among medical students.METHODS Online courses were developed and offered on personal computers and mobile terminals.Behavioral analysis and formative assessments were conducted to evaluate the learning status of students.RESULTS The results showed that most learners had already completed MOOCs and achieved better results.Course behavior analysis and student surveys indicated that students enjoyed the learning experience.However,the development of oral MOOCs during the COVID-19 pandemic faced significant challenges.CONCLUSION This study provides insights into the potential of using MOOCs to support online professional learning and future teaching innovation,but emphasizes the need for careful design and positive feedback to ensure their success. 展开更多
关键词 Oral medicine COVID-19 Epidemic prevention and control Online education Behavior analysis formative assessments
下载PDF
Finite element analysis of stiffness and static dent resistance of aluminum alloy double-curved panel in viscous pressure forming 被引量:10
6
作者 LI Yi WANG Zhong-Jin 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2009年第S02期312-317,共6页
The static dent resistance performance of the aluminum alloy double-curved panel formed using viscous pressure forming (VPF)was studied by finite element analysis,which mainly considers the forming process conditions.... The static dent resistance performance of the aluminum alloy double-curved panel formed using viscous pressure forming (VPF)was studied by finite element analysis,which mainly considers the forming process conditions.The whole simulation consisting of three stages,i.e.,forming,spring-back and static dent resistance,was carried out continuously using the finite element code ANSYS.The influence of blank holder pressure(BHP)and the drawbead on the stiffness and the static dent resistance of the panels formed using VPF was analyzed.The results show that the adequate setting of the drawbead can increase the plastic deformation of the double-curved panel,which is beneficial to the initial stiffness and the static dent resistance.There is an optimum BHP range for the stiffness and the static dent resistance. 展开更多
关键词 aluminum alloy double-curved panel viscous pressure forming panel stiffness static dent resistance finite element analysis
下载PDF
Variations of plant life form diversity along the Northeast China Transect and its direct gradient analysis 被引量:2
7
作者 WANGRen-zhong GAOQiong2 TANGHai-ping: 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第4期547-551,共5页
Plant life form diversity and its direct gradient analysis on a larger scale climate change gradient were tested, based on the data from Northeast China Transect platform. The results showed that the species numbers, ... Plant life form diversity and its direct gradient analysis on a larger scale climate change gradient were tested, based on the data from Northeast China Transect platform. The results showed that the species numbers, life form richness and life form diversity were relative higher at the eastern forests and the ecotone between typical vegetation, while those on the meadow grasslands and typical steppes were lower. Although plant life forms can reflect the climate variations, life form diversity is not consistent with the major global gradient along the NECT. 展开更多
关键词 northeast China transect plant life form diversity ECOTONE gradient analysis
下载PDF
Vector form Intrinsic Finite Element Method for the Two-Dimensional Analysis of Marine Risers with Large Deformations 被引量:3
8
作者 LI Xiaomin GUO Xueli GUO Haiyan 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第3期498-506,共9页
Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static an... Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element(VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method(FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers. 展开更多
关键词 marine riser vector form intrinsic finite element (VFIFE) static analysis dynamic analysis geometric nonlinearity
下载PDF
Painleve Analysis and Determinant Solutions of a (3+1)-Dimensional Variable-Coefficient Kadomtsev-Petviashvili Equation in Wronskian and Grammian Form 被引量:2
9
作者 MENG Xiang-Hua TIAN Bo +2 位作者 FENG Qian YAO Zhen-Zhi GAO Yi-Tian 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第6期1062-1068,共7页
In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plas... In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev- Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plasma in three spatial dimensions. In order to study the integrability property of such an equation, the Painlevé analysis is performed on it. And then, based on the truncated Painlevé expansion, the bilinear form of the (3+1)-dimensionaJ vcKP equation is obtained under certain coefficients constraint, and its solution in the Wronskian determinant form is constructed and verified by virtue of the Wronskian technique. Besides the Wronskian determinant solution, it is shown that the (3+1)-dimensional vcKP equation also possesses a solution in the form of the Grammian determinant. 展开更多
关键词 (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation Painlev@ analysis bilinear form Wronskian determinant Grammian determinant symbolic computation
下载PDF
Method of fabricating artificial rock specimens based on extrusion free forming(EFF)3D printing
10
作者 Xiaomeng Shi Tingbang Deng +2 位作者 Sen Lin Chunjiang Zou Baoguo Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1455-1466,共12页
Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natura... Three-dimensional(3D)printing technology has been widely used to create artificial rock samples in rock mechanics.While 3D printing can create complex fractures,the material still lacks sufficient similarity to natural rock.Extrusion free forming(EFF)is a 3D printing technique that uses clay as the printing material and cures the specimens through high-temperature sintering.In this study,we attempted to use the EFF technology to fabricate artificial rock specimens.The results show the physico-mechanical properties of the specimens are significantly affected by the sintering temperature,while the nozzle diameter and layer thickness also have a certain impact.The specimens are primarily composed of SiO_(2),with mineral compositions similar to that of natural rocks.The density,uniaxial compressive strength(UCS),elastic modulus,and tensile strength of the printed specimens fall in the range of 1.65–2.54 g/cm3,16.46–50.49 MPa,2.17–13.35 GPa,and 0.82–17.18 MPa,respectively.It is capable of simulating different types of rocks,especially mudstone,sandstone,limestone,and gneiss.However,the simulation of hard rocks with UCS exceeding 50 MPa still requires validation. 展开更多
关键词 Artificial rock 3D printing Extrusion free forming(EFF) Similarity analysis Mechanical properties
下载PDF
FE simulation and process analysis on forming of aluminum alloy multi-layer cylinder parts with flow control forming 被引量:5
11
作者 王新云 吴有生 +1 位作者 夏巨谌 胡国安 《中国有色金属学会会刊:英文版》 CSCD 2005年第2期452-456,共5页
The aluminum alloy parts used in airbag of car were studied with flow control forming(FCF) method, which was a good way to low forming force and better mechanical properties. The key technology of FCF was the design o... The aluminum alloy parts used in airbag of car were studied with flow control forming(FCF) method, which was a good way to low forming force and better mechanical properties. The key technology of FCF was the design of control chamber to divide metal flow. So, the design method of FCF was analyzed and two type of control chamber were put forward. According to divisional principle, calculation model of forming force and approximate formula were given. Then forming process of aluminum alloy multi-layer cylinder parts was simulated. The effect of friction factor, die radius and punch velocity on metal flow and forming force was obtained. Finally, the experiment was preformed under the direction of theory and finite element(FE) simulation results. And the qualified parts were manufactured. The simulation data and experimental results show that the forming sequence of inner wall and outer wall, and then the force step, can be controlled by adjusting the process parameters. And the FCF technology proposed has very important application value in precision forging. 展开更多
关键词 流动控制成型 多层圆筒 力学计算 铝合金 有限元
下载PDF
COMPUTER AIDED ANALYSIS FOR COLD ROLL FORMING THIN CHANNEL SECTION
12
作者 Z. W. Han ,Y.Q. Nie, L.Q. Ren and C. Liu (Key Laboratory of Terrain Machine Bionic Technology, Jilin University, Changchun 130025, China) (Mechanics Department, Jilin University, Changchun 130025, China) (Institute of Rolling Mill, Yanshan University, Qin 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2001年第2期122-126,共5页
Cold roll forming is a complicated metal processing, and its is very difficult to simulate the forming process. Based on the Updated-Lagrange method in the deformation mechanics, an elastic-plastic large deformation s... Cold roll forming is a complicated metal processing, and its is very difficult to simulate the forming process. Based on the Updated-Lagrange method in the deformation mechanics, an elastic-plastic large deformation spline finite strip method is developed to analyze cold roll forming of a thin channel section. The longitudinal membrane strain values on the edge of the deformed strip for four one-pass sequences in different fold angles are got. Simulated results are compared with the results from previously conducted experiments. The deviation of the simulated peak strain values is within 30% compared with the experimental results. 展开更多
关键词 Computer aided analysis Computer simulation formING Mathematical models
下载PDF
Hyperbolic Error Analysis and Parametric Optimization of Round Body Form Tool
13
作者 ZHENG You-yi 1, LI Xing 1, ZHAO Lai-fu 2, GAO Ai-hua 1 (1. Jiaozuo Institute of Technology, Jiaozuo 454000, China 2. China United Telecommunication Corporation Jiaozuo Branch, Jiaozuo 454000, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期63-,共1页
with the merits of the easy manufacture and the long service life and the processing the inside or outside form surface, round body form tool is extensive use in large scales production. Its main demerit is the big hy... with the merits of the easy manufacture and the long service life and the processing the inside or outside form surface, round body form tool is extensive use in large scales production. Its main demerit is the big hyperbolic error which is caused in the process of processing cone, but about the discussion of hyperbolic error, there are two drawbacks in the current books and documents: (1) The error measuring plane is established on the rake face of tool, which doesn’t coincide with the actual measuring plane (axial plane) of work piece; (2) When the influential elements of error are analyzed, single parameter is only discussed. In order to overcome these demerits, the mathematical model of hyperbolic error on the axial plane of work piece is built in this paper when round body form tool processes cone. The fundamental reason which causes hyperbolic error when round body form tool processes cone is that the line profile replaces the curve profile of theory in the radial cut plane of tool in the design and manufacture of tool. In order to evaluate the mathematical formula of its error, firstly, the equation of cone of work piece must be established, secondly, the equation of cutting lip in the rake face is established, then, the profile equation of the radial plane of tool is evaluated on the condition that coordinate is changed, at last, the hyperbolic error is derived according to the equation and the substitutional line equation, and the error is converted to the axial plane of work piece which is coincided with the measuring plane. The actual calculation and the theory analysis indicated that if the cone length and the coning of the cone of work piece are fixed, the main elements which affect the hyperbolic error in the axial plane of work piece are the outside diameter R of round body form tool, the rake angle and the rear angle in "base point". If these three parameters are combined rationally, the hyperbolic error is minimum when round body form tool process cone, and the machining precision of work piece can be improved, on the condition that neither the work capacity of the tool design nor the manufacture cost of tool increases. 展开更多
关键词 round body form tool analysis of hyperbolic error parametric optimization
下载PDF
Test research and computer simulation analysis of construction state during form finding for suspen-dome system
14
作者 李永梅 史炎升 +3 位作者 张毅刚 张力 刘佳 吴金志 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第5期690-696,共7页
A novel construction method without scaffold work called as assembly-prestressing form finding loop by loop is presented.Based on the theory of finite displacement,the cycle-forward analysis method is presented for it... A novel construction method without scaffold work called as assembly-prestressing form finding loop by loop is presented.Based on the theory of finite displacement,the cycle-forward analysis method is presented for its construction calculation,which adopts the finite element method of generalized geometric nonlinearity combined with the application in the real construction process.By means of the combination of the forward analysis according to real construction sequence and the cycle iteration according to the initial strain increment method of cable force adjustment,the influence of the structural geometric nonlinearity and the loss of prestress are taken into account due to prestressing of tendons in turn and so on.If the initial cable forces derived from the method were used for construction,expected cable forces and shape could be assured easily.Simulation analysis achieved real-time tracking and controlling of the construction status.Finally,according to the procedure and parameters in simulating,a model experimental research on the stage of form finding(namely prestressing)was carried out for suspen-dome structure.The feasibility on the assembly-prestressing form finding method loop by loop was testified.The cycle-forward analysis method was established and numerical simulation was performed,and the results show that it was useful for the design and the construction of similar suspen-dome structure. 展开更多
关键词 SUSPEN-DOME assembly-prestressing form finding loop by loop cycle-forward analysis the increment of initial strain form finding test
下载PDF
Deforming analysis of sheet metal based on stereo vision and coordinate grid
15
作者 HongqinWei DehongYu +1 位作者 XueyuRuan YouqingWang 《Journal of University of Science and Technology Beijing》 CSCD 2004年第2期178-182,共5页
A new approach based on stereo vision technology is introduced to analyzesheet metal deformation. By measuring the deformed circle grids that are printed on the sheetsurface before forming, the strain distribution of ... A new approach based on stereo vision technology is introduced to analyzesheet metal deformation. By measuring the deformed circle grids that are printed on the sheetsurface before forming, the strain distribution of the workpiece is obtained. The measurement andanalysis results can be used to verify numerical simulation results and guide production. To getgood accuracy, some new techniques are employed: camera calibration based on genetic algorithm,feature abstraction based on self-adaptive technology, image matching based on structure feature andcamera modeling pre-constrains, and parameter calculation based on curve and surface optimization.The experimental values show that the approach proposed is rational and practical, which can providebetter measurement accuracy with less time than the conventional method. 展开更多
关键词 sheet metal forming deforming analysis stereo vision coordinate grid
下载PDF
Numerical modeling and deformation analysis for electromagnetically assisted deep drawing of AA5052 sheet 被引量:4
16
作者 刘大海 李春峰 于海平 《中国有色金属学会会刊:英文版》 EI CSCD 2009年第5期1294-1302,共9页
Electromagnetic forming(EMF)is a high-velocity manufacturing technique which uses electromagnetic(Lorentz)body forces to shape sheet metal parts.One of the several advantages of EMF is the considerable ductility incre... Electromagnetic forming(EMF)is a high-velocity manufacturing technique which uses electromagnetic(Lorentz)body forces to shape sheet metal parts.One of the several advantages of EMF is the considerable ductility increase observed in several metals,with aluminum featuring prominently among them.Electromagnetically assisted sheet metal stamping(EMAS)is an innovative hybrid sheet metal processing technique that combines EMF into traditional stamping.To evaluate the efficiency of this technique,an experimental scheme of EMAS was established according to the conventional stamping of cylindrical parts from aluminum and the formability encountered was discussed.Furthermore,a "multi-step,loose coupling" numerical scheme was proposed to investigate the deformation behaviors based on the ANSYS Multiphysics/LS-DYNA platform through establishing user-defined subroutines.The results show that electromagnetically assisted deep drawing can remarkably improve the formability of aluminum cylindrical parts.The proposed numerical scheme can successfully simulate the related Stamping-EMF process,and the deformation characteristics of sheet metal reflect experimental results.The predicted results are also validated with the profiles of the deformed sheets in experiments. 展开更多
关键词 电磁成形 变形分析 数值模拟 深冲板 钣金冲压 加工技术 金属板材 生态管理
下载PDF
Parametric analysis of warm forming of aluminum blanks with FEA and DOE 被引量:2
17
作者 陈鹏 林忠钦 +1 位作者 陈关龙 K. Muammer 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第2期267-273,共7页
The effect of temperature distribution on warm forming performance was investigated for 5083-O (Al-Mg) sheet metal blanks. Combined isothermal/non-isothermal FEA with design of experiments tools were used to predict a... The effect of temperature distribution on warm forming performance was investigated for 5083-O (Al-Mg) sheet metal blanks. Combined isothermal/non-isothermal FEA with design of experiments tools were used to predict appropriate warm forming temperature conditions for deep drawing and two-dimensional stamping cases. In the investigated temperature range of 25?250 ℃, the formability of Al-5083 alloy is found to be greatly dependent on the temperature distribution of the die and punch. To achieve increased degrees of forming, different temperature levels should be assigned to the corner and body of the die and punch. And the optimal temperature distributions for warm deep drawing and warm two-dimensional stamping are not identical. 展开更多
关键词 热成型 铝合金 有限元 FEA DOE
下载PDF
Flexural and eigen-buckling analysis of steel-concrete partially composite plates using weak form quadrature element method
18
作者 XIA Jun SHEN Zhi-qiang +1 位作者 LIU Kun SUN Cheng-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3087-3102,共16页
Flexural and eigen-buckling analyses for rectangular steel-concrete partially composite plates(PCPs)with interlayer slip under simply supported and clamped boundary conditions are conducted using the weak form quadrat... Flexural and eigen-buckling analyses for rectangular steel-concrete partially composite plates(PCPs)with interlayer slip under simply supported and clamped boundary conditions are conducted using the weak form quadrature element method(QEM).Both of the derivatives and integrals in the variational description of a problem to be solved are directly evaluated by the aid of identical numerical interpolation points in the weak form QEM.The effectiveness of the presented numerical model is validated by comparing numerical results of the weak form QEM with those from FEM or analytic solution.It can be observed that only one quadrature element is fully competent for flexural and eigen-buckling analysis of a rectangular partially composite plate with shear connection stiffness commonly used.The numerical integration order of quadrature element can be adjusted neatly to meet the convergence requirement.The quadrature element model presented here is an effective and promising tool for further analysis of steel-concrete PCPs under more general circumstances.Parametric studies on the shear connection stiffness and length-width ratio of the plate are also presented.It is shown that the flexural deflections and the critical buckling loads of PCPs are significantly affected by the shear connection stiffness when its value is within a certain range. 展开更多
关键词 weak form quadrature element method partially composite plates interlayer slip flexural analysis eigen-buckling analysis
下载PDF
Quantifying.Associations among Dimensions of Ears and Their Form Factors in Maize(Zea Mays)Using Dimensional Analysis
19
作者 Hongbo CAO Gaimei LIANG Jinzhong YANG 《Agricultural Science & Technology》 CAS 2016年第10期2287-2292,共6页
Ear morphological traits such as volume and shape are important features of maize and the quantitative associations among them can help understand kernel yield determination. 150 mature ears each of 4 maize cultivars ... Ear morphological traits such as volume and shape are important features of maize and the quantitative associations among them can help understand kernel yield determination. 150 mature ears each of 4 maize cultivars were collected from field experiments, and ear length(L), diameter(D), area(S) and volume(V) were recorded for individual ears, kernel weight per ear also recorded for a portion of the examined ears. Following principles of dimensional analysis, 8 theoretical equations of 3 sets,which relate ear higher dimensions to its length and diameter, were developed and parameterized and validated with the field observations. The 3 optimized equations showed that the shape of ears in maize can be featured with 3 dimensionless form factors, namely diameter-to-length ratio(c=D/L), areal form factor(b=S/L/D), and volumetric form factor(a=V/L/D/D). Statistically,all of them were significantly different among cultivars, and a's values varied from 0.582 to 0.612, and b's 0.839-0.868, and c's 0.242-0.308. Volumetric form factor and areal form factor could estimate precisely ear volume and area respectively, but diameter-to-length ratio was not suitable to estimate ear diameter by its length. Ear volume explained almost all variation of ear kernel weight and product L*D*D did the same substantially. Dimensional analysis proved to be promising in understanding relationship among morphological traits of ears in maize. Its application in crop researches should improve our knowledge of the physical properties of crop plants. 展开更多
关键词 Maize(Zea Mays) Dimensional analysis Ear shape Volumetric form factors Ear volume Diameter-to-length ratio Ear kernel weight
下载PDF
FEM Analysis and Simulation for Prediction of Press-Forming and Spring Back of Spiral Plates
20
作者 GAO San-de HAN Bao-ling 《Computer Aided Drafting,Design and Manufacturing》 2010年第1期31-38,共8页
In order to provide technical supports for designing a new type of spiral plate forming machine, FEM analysis and simulation were carried out based on pressing tests. Deformation, stress distribution, residual stress ... In order to provide technical supports for designing a new type of spiral plate forming machine, FEM analysis and simulation were carried out based on pressing tests. Deformation, stress distribution, residual stress and spring back of the spiral plate were calculated. Relationships between the spiral pitch to inclination angle of the punch and die, material properties and thickness of the plate were analyzed. A data converter was developed and effectively used in the analysis. The results of FEM analysis and simulation have been applied to design the spiral plate forming machines. 展开更多
关键词 FEM analysis spiral plate press forming spiral pitch spring back
下载PDF
上一页 1 2 186 下一页 到第
使用帮助 返回顶部