By taking full account of the non-orthogonality of the orbitals between the low-lying doubly excited states ^1po and the singly excited states ^1S^e and ^1D^e of He, the corresponding radiative decay rates have been i...By taking full account of the non-orthogonality of the orbitals between the low-lying doubly excited states ^1po and the singly excited states ^1S^e and ^1D^e of He, the corresponding radiative decay rates have been investigated theoretically via analytic generalized Laguerre-type atomic orbitals at a nearly numerical multi-conflguration self-consistent field accuracy in a general non-orthogonal configuration interaction scheme. From these rates, we calculate the VUV photon emission and metastable atom spectra, and both are found to be in good qualitative agreement with recent excellent measurements. We obtain, successfully, the enhancement of the VUV photon spectrum, experimentally observed at the energy of (2s4p-4s2p)/(2p,3d) ^1po as compared with other nearby lying states. The mechanism proposed by Odling-Smee et al is verified, implying that taking appropriate account of the overlap existing between orbitals of the low-lying doubly excited and singly excited states (especially important for the compact orbitals) can reveal basic physical dominant mechanism and is crucial in understanding these spectra.展开更多
A set of generalized symmetries with arbitrary functions of t for the Konopelchenko-Dubrovsky (KD)equation in 2+1 space dimensions is given by using a direct method called formal function series method presented by Lo...A set of generalized symmetries with arbitrary functions of t for the Konopelchenko-Dubrovsky (KD)equation in 2+1 space dimensions is given by using a direct method called formal function series method presented by Lou. These symmetries constitute an infinite-dimensional generalized w∞ algebra.展开更多
Using Keldysh nonequilibrium Green function formalism and mapping a many-body electron-phonon interaction onto a one body problem, the electron transport through a serially coupled double quantum dot system is analyze...Using Keldysh nonequilibrium Green function formalism and mapping a many-body electron-phonon interaction onto a one body problem, the electron transport through a serially coupled double quantum dot system is analyzed. The influence of the electron-phonon interaction, temperature, detuning, and interdot tunneling on the transmission coefficient and current is studied. Our results show that the electron-phonon interaction results in the appearance of the side peaks in the transmission coefficient, whose height is strongly dependent on the phonon temperature. We have also found that the inequality of the electron-phonon interaction strength in two dots gives rise to an asymmetry in the current-voltage characteristic. In addition, the temperature difference between the phonon and electron subsystems results in the reduction of the saturated current and the destruction of the step-like behavior of the current. It is also observed that the detuning can improve the magnitude of the current by compensating the mismatch of the quantum dots energy levels induced by the electron-phonon interaction.展开更多
In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of ...In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of making a more general transformation. For illustration, we apply the method to the (2+1)-dimensional dispersive long wave equation and successfully obtain many new doubly periodic solutions, which degenerate as soliton solutions when the modulus m approximates 1. The method can also be applied to other nonlinear partial differential equations.展开更多
In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evo...In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evolution equations. To illustrate the effectiveness of our method, we take the (2+ 1)-dimensional stochastic dispersive long wave system as an example. We not only have obtained some known solutions, but also have constructed some new rational formal stochastic Jacobi elliptic function solutions.展开更多
By applying nonequilibrium Green's function formalism combined with the first-principles density functional theory, we investigate the electronic transport in two molecular junctions constituted by a substituted o...By applying nonequilibrium Green's function formalism combined with the first-principles density functional theory, we investigate the electronic transport in two molecular junctions constituted by a substituted oligo (phenylene ehtynylene) sand-wiched between two Au electrodes. Our calculations show that the weak molecule-electrode coupling is responsible for the observation of the negative differential resistance (NDR) effect in experiments. When the coupling is weak, the projected density of states (PDOS) of the molecule and the electrodes undergoes a mismatch-match-mismatch procedure, which increases and then decreases the transmission peak intensities, leading to a NDR effect. We also find that the localization/delocalization of the molecular orbitals and the change of charge state of the molecule have no direct relation with the NDR effect, because they change little as the voltage increases.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10347126), National High Technology Development Program of China (Grant No 2004AA306H10) and the Program "Excellence in the Research Institutes Supervised by the General Secretariat for Research and Technology / Ministry of Development", Greece.Acknowledgments Xiong Zhuang would like to express his appreciation for the partial support from the Greek State Scholarship Foundation (I.K.Y.) and the National Hellenic Research Foundation Scholarship for this work.
文摘By taking full account of the non-orthogonality of the orbitals between the low-lying doubly excited states ^1po and the singly excited states ^1S^e and ^1D^e of He, the corresponding radiative decay rates have been investigated theoretically via analytic generalized Laguerre-type atomic orbitals at a nearly numerical multi-conflguration self-consistent field accuracy in a general non-orthogonal configuration interaction scheme. From these rates, we calculate the VUV photon emission and metastable atom spectra, and both are found to be in good qualitative agreement with recent excellent measurements. We obtain, successfully, the enhancement of the VUV photon spectrum, experimentally observed at the energy of (2s4p-4s2p)/(2p,3d) ^1po as compared with other nearby lying states. The mechanism proposed by Odling-Smee et al is verified, implying that taking appropriate account of the overlap existing between orbitals of the low-lying doubly excited and singly excited states (especially important for the compact orbitals) can reveal basic physical dominant mechanism and is crucial in understanding these spectra.
基金浙江省自然科学基金,浙江省宁波市博士基金,the State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation,Scientific Research Fund of Education Department of Zhejiang Province under
文摘A set of generalized symmetries with arbitrary functions of t for the Konopelchenko-Dubrovsky (KD)equation in 2+1 space dimensions is given by using a direct method called formal function series method presented by Lou. These symmetries constitute an infinite-dimensional generalized w∞ algebra.
文摘Using Keldysh nonequilibrium Green function formalism and mapping a many-body electron-phonon interaction onto a one body problem, the electron transport through a serially coupled double quantum dot system is analyzed. The influence of the electron-phonon interaction, temperature, detuning, and interdot tunneling on the transmission coefficient and current is studied. Our results show that the electron-phonon interaction results in the appearance of the side peaks in the transmission coefficient, whose height is strongly dependent on the phonon temperature. We have also found that the inequality of the electron-phonon interaction strength in two dots gives rise to an asymmetry in the current-voltage characteristic. In addition, the temperature difference between the phonon and electron subsystems results in the reduction of the saturated current and the destruction of the step-like behavior of the current. It is also observed that the detuning can improve the magnitude of the current by compensating the mismatch of the quantum dots energy levels induced by the electron-phonon interaction.
文摘In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of making a more general transformation. For illustration, we apply the method to the (2+1)-dimensional dispersive long wave equation and successfully obtain many new doubly periodic solutions, which degenerate as soliton solutions when the modulus m approximates 1. The method can also be applied to other nonlinear partial differential equations.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000
文摘In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evolution equations. To illustrate the effectiveness of our method, we take the (2+ 1)-dimensional stochastic dispersive long wave system as an example. We not only have obtained some known solutions, but also have constructed some new rational formal stochastic Jacobi elliptic function solutions.
基金supported by the National Basic Research Program of China (Grant No. 2009CB929204)the National Natural Science Foundation of China (Grant Nos. 10874100, 10904082 and 11074146)the Natural Science Foundation of Shandong Province (Grant No. ZR2009AL004)
文摘By applying nonequilibrium Green's function formalism combined with the first-principles density functional theory, we investigate the electronic transport in two molecular junctions constituted by a substituted oligo (phenylene ehtynylene) sand-wiched between two Au electrodes. Our calculations show that the weak molecule-electrode coupling is responsible for the observation of the negative differential resistance (NDR) effect in experiments. When the coupling is weak, the projected density of states (PDOS) of the molecule and the electrodes undergoes a mismatch-match-mismatch procedure, which increases and then decreases the transmission peak intensities, leading to a NDR effect. We also find that the localization/delocalization of the molecular orbitals and the change of charge state of the molecule have no direct relation with the NDR effect, because they change little as the voltage increases.