We consider the sufficient and necessary conditions for the formal triangular matrix ring being right minsymmetric, right DS, semicommutative, respectively.
Let U be a (B, A)-bimodule, A and B be rings, and be a formal triangular matrix ring. In this paper, we characterize the structure of relative Ding projective modules over T under some conditions. Furthermore, using t...Let U be a (B, A)-bimodule, A and B be rings, and be a formal triangular matrix ring. In this paper, we characterize the structure of relative Ding projective modules over T under some conditions. Furthermore, using the left global relative Ding projective dimensions of A and B, we estimate the relative Ding projective dimension of a left T-module.展开更多
Let A and B be rings and U a(B,A)-bimodule.If BU is flat and UA is finitely generated projective(resp.,BU is finitely generated projective and UA is flat),then the characterizations of level modules and Gorenstein AC-...Let A and B be rings and U a(B,A)-bimodule.If BU is flat and UA is finitely generated projective(resp.,BU is finitely generated projective and UA is flat),then the characterizations of level modules and Gorenstein AC-projective modules(resp.,absolutely clean modules and Gorenstein AC-injective modules)over the formal triangular matrix ring T=(A0 UB)are given.As applications,it is proved that every Gorenstein AC-projective left T-module is projective if and only if each Gorenstein AC-projective left A-module and B-module is projective,and every Gorenstein AC-injective left T-module is injective if and only if each Gorenstein AC-injective left A-module and B-module is injective.Moreover,Gorenstein AC-projective and AC-injective dimensions over the formal triangular matrix ring T are studied.展开更多
Let R be a ring. Recall that a right R-module M (RR, resp.) is said to be a PS-module (PS-ring, resp.) if it has projective socle. M is called a CESS-module if every complement summand in M with essential socle is a d...Let R be a ring. Recall that a right R-module M (RR, resp.) is said to be a PS-module (PS-ring, resp.) if it has projective socle. M is called a CESS-module if every complement summand in M with essential socle is a direct summand of M. We show that the formal triangular matrix ring T = A 0M B is a PS-ring if and only if A is a PS-ring, MA and lB(M) = {b ∈ B | bm = 0,m ∈ M} are PS-modules and Soc(lB(M)) M = 0. Using the alternative of right T-module as triple (X,Y )f with X ∈ Mod-A, Y ∈ Mod-B and f : YM →...展开更多
In this paper the sufficient and necessary conditions are given for a formal triangular matrix ring to be right PP, generalized right PP, or semihereditary, respectively.
In this paper we continue the study of various ring theoretic properties of Morita contexts.Necessary and sufficient conditions are obtained for a general Morita context or a trivial Morita context or a formal triangu...In this paper we continue the study of various ring theoretic properties of Morita contexts.Necessary and sufficient conditions are obtained for a general Morita context or a trivial Morita context or a formal triangular matrix ring to satisfy a certain ring property which is among being Kasch,completely primary,quasi-duo,2-primal,NI,semiprimitive,projective-free,etc.We also characterize when a general Morita context is weakly principally quasi-Baer or strongly right mininjective.展开更多
基金Foundation item: Supported by the Fund of Beijing Education Committee(KM200610005024) Supported by the National Natural Science Foundation of China(10671061)
文摘We consider the sufficient and necessary conditions for the formal triangular matrix ring being right minsymmetric, right DS, semicommutative, respectively.
文摘Let U be a (B, A)-bimodule, A and B be rings, and be a formal triangular matrix ring. In this paper, we characterize the structure of relative Ding projective modules over T under some conditions. Furthermore, using the left global relative Ding projective dimensions of A and B, we estimate the relative Ding projective dimension of a left T-module.
基金partly supported by NSF of China(grants 11761047 and 11861043).
文摘Let A and B be rings and U a(B,A)-bimodule.If BU is flat and UA is finitely generated projective(resp.,BU is finitely generated projective and UA is flat),then the characterizations of level modules and Gorenstein AC-projective modules(resp.,absolutely clean modules and Gorenstein AC-injective modules)over the formal triangular matrix ring T=(A0 UB)are given.As applications,it is proved that every Gorenstein AC-projective left T-module is projective if and only if each Gorenstein AC-projective left A-module and B-module is projective,and every Gorenstein AC-injective left T-module is injective if and only if each Gorenstein AC-injective left A-module and B-module is injective.Moreover,Gorenstein AC-projective and AC-injective dimensions over the formal triangular matrix ring T are studied.
基金the National Natural Science Foundation of China (No.10171082)TRAPOYT (No.200280)Yong Teachers Research Foundation of NWNU (No.NWNU-QN-07-36)
文摘Let R be a ring. Recall that a right R-module M (RR, resp.) is said to be a PS-module (PS-ring, resp.) if it has projective socle. M is called a CESS-module if every complement summand in M with essential socle is a direct summand of M. We show that the formal triangular matrix ring T = A 0M B is a PS-ring if and only if A is a PS-ring, MA and lB(M) = {b ∈ B | bm = 0,m ∈ M} are PS-modules and Soc(lB(M)) M = 0. Using the alternative of right T-module as triple (X,Y )f with X ∈ Mod-A, Y ∈ Mod-B and f : YM →...
基金Partially supported by the Fund (KM200610005024) of Beijing Education Committeethe NNSF (10671061) of China.
文摘In this paper the sufficient and necessary conditions are given for a formal triangular matrix ring to be right PP, generalized right PP, or semihereditary, respectively.
文摘In this paper we continue the study of various ring theoretic properties of Morita contexts.Necessary and sufficient conditions are obtained for a general Morita context or a trivial Morita context or a formal triangular matrix ring to satisfy a certain ring property which is among being Kasch,completely primary,quasi-duo,2-primal,NI,semiprimitive,projective-free,etc.We also characterize when a general Morita context is weakly principally quasi-Baer or strongly right mininjective.