This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology.A novel Finite-Time Convergent Extended ...This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology.A novel Finite-Time Convergent Extended State Observer(FTCESO)based fully-distributed formation control scheme is proposed to enhance the disturbance rejection and the formation tracking performances for networked quadrotors.By adopting the hierarchical control strategy,the multiquadrotor system is separated into two subsystems:the outer-loop cooperative subsystem and the inner-loop attitude subsystem.In the outer-loop subsystem,with the estimation of disturbing forces and uncertain dynamics from FTCESOs,an adaptive consensus theory based cooperative controller is exploited to ensure the multiple quadrotors form and maintain a time-varying pattern relying only on the positions of the neighboring aircrafts.In the inner-loop subsystem,the desired attitude generated by the cooperative control law is stably tracked under a FTCESO-based attitude controller in a finite time.Based on a detailed algorithm to specify the cooperative control protocol,the feasibility condition to achieve the time-varying anti-disturbance formation tracking is derived and the rigorous analysis of the whole closed-loop multi-quadrotor system is given.Some numerical examples are conducted to intuitively demonstrate the effectiveness and the improvements of the proposed control framework.展开更多
In this paper, formation tracking control problems for second-order multi-agent systems(MASs) with time-varying delays are studied, specifically those where the position and velocity of followers are designed to for...In this paper, formation tracking control problems for second-order multi-agent systems(MASs) with time-varying delays are studied, specifically those where the position and velocity of followers are designed to form a time-varying formation while tracking those of the leader. A neighboring relative state information based formation tracking protocol with an unknown gain matrix and time-varying delays is presented. The formation tracking problems are then transformed into asymptotically stable problems. Based on the Lyapunov-Krasovskii functional approach, conditions sufficient for second-order MASs with time-varying delays to realize formation tracking are examined. An approach to obtain the unknown gain matrix is given and, since neighboring relative velocity information is difficult to measure in practical applications, a formation tracking protocol with time-varying delays using only neighboring relative position information is introduced. The proposed results can be used on target enclosing problems for MASs with second-order dynamics and time-varying delays. An application for target enclosing by multiple unmanned aerial vehicles(UAVs) is given to demonstrate the feasibility of theoretical results.展开更多
The problem of satellite formation tracking control is studied by using the tool, the satellite tool kit (STK ) software.To fight against gravitational perturbation rejection, a sliding mode controller for each sate...The problem of satellite formation tracking control is studied by using the tool, the satellite tool kit (STK ) software.To fight against gravitational perturbation rejection, a sliding mode controller for each satellite is proposed to accomplish the orbit trace and is then verified by the STK.For the purpose of accomplishing the formation tracking mission with bidirectional communication in STK,a time-share orderly calling plug-in is designed by C ++,which gives solutions to the problems of the monopolization of computing resource and no return of the satellite identifier in the calculation center. The effectiveness of the decoupling approach is tested and verified by the STK.The simulation results obtained by the STK are more meaningful than those obtained by Matlab.展开更多
Purpose–The purpose of this paper is to investigate the time-varying finite-time formation tracking control problem for multiple unmanned aerial vehicle systems under switching topologies,where the states of the unma...Purpose–The purpose of this paper is to investigate the time-varying finite-time formation tracking control problem for multiple unmanned aerial vehicle systems under switching topologies,where the states of the unmanned aerial vehicles need to form desired time-varying formations while tracking the trajectory of the virtual leader in finite time under jointly connected topologies.Design/methodology/approach–A consensus-based formation control protocol is constructed to achieve the desired formation.In this paper,the time-varying formation is specified by a piecewise continuously differentiable vector,while the finite-time convergence is guaranteed by utilizing a non-linear function.Based on the graph theory,the finite-time stability of the close-loop system with the proposed control protocol under jointly connected topologies is proven by applying LaSalle’s invariance principle and the theory of homogeneity with dilation.Findings–The effectiveness of the proposed protocol is verified by numerical simulations.Consequently,the proposed protocol can successfully achieve the predefined time-varying formation in finite time under jointly connected topologies while tracking the trajectory generated by the leader.Originality/value–This paper proposes a solution to simultaneously solve the control problems of time-varying formation tracking,finite-time convergence,and switching topologies.展开更多
文摘This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology.A novel Finite-Time Convergent Extended State Observer(FTCESO)based fully-distributed formation control scheme is proposed to enhance the disturbance rejection and the formation tracking performances for networked quadrotors.By adopting the hierarchical control strategy,the multiquadrotor system is separated into two subsystems:the outer-loop cooperative subsystem and the inner-loop attitude subsystem.In the outer-loop subsystem,with the estimation of disturbing forces and uncertain dynamics from FTCESOs,an adaptive consensus theory based cooperative controller is exploited to ensure the multiple quadrotors form and maintain a time-varying pattern relying only on the positions of the neighboring aircrafts.In the inner-loop subsystem,the desired attitude generated by the cooperative control law is stably tracked under a FTCESO-based attitude controller in a finite time.Based on a detailed algorithm to specify the cooperative control protocol,the feasibility condition to achieve the time-varying anti-disturbance formation tracking is derived and the rigorous analysis of the whole closed-loop multi-quadrotor system is given.Some numerical examples are conducted to intuitively demonstrate the effectiveness and the improvements of the proposed control framework.
基金co-supported by the National Natural Science Foundation of China (Nos. 61333011, 91216304 and 61121003)
文摘In this paper, formation tracking control problems for second-order multi-agent systems(MASs) with time-varying delays are studied, specifically those where the position and velocity of followers are designed to form a time-varying formation while tracking those of the leader. A neighboring relative state information based formation tracking protocol with an unknown gain matrix and time-varying delays is presented. The formation tracking problems are then transformed into asymptotically stable problems. Based on the Lyapunov-Krasovskii functional approach, conditions sufficient for second-order MASs with time-varying delays to realize formation tracking are examined. An approach to obtain the unknown gain matrix is given and, since neighboring relative velocity information is difficult to measure in practical applications, a formation tracking protocol with time-varying delays using only neighboring relative position information is introduced. The proposed results can be used on target enclosing problems for MASs with second-order dynamics and time-varying delays. An application for target enclosing by multiple unmanned aerial vehicles(UAVs) is given to demonstrate the feasibility of theoretical results.
基金The National Natural Science Foundation of China(No.61203356,61473081,61374069)the Ph.D.Programs Foundation of Ministry of Education of China(No.20110092120025)+1 种基金the Open Fund of Key Laboratory of Measurement and Control of Complex Systems of Engineering of Ministry of Education(No.MCCSE2014B01)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The problem of satellite formation tracking control is studied by using the tool, the satellite tool kit (STK ) software.To fight against gravitational perturbation rejection, a sliding mode controller for each satellite is proposed to accomplish the orbit trace and is then verified by the STK.For the purpose of accomplishing the formation tracking mission with bidirectional communication in STK,a time-share orderly calling plug-in is designed by C ++,which gives solutions to the problems of the monopolization of computing resource and no return of the satellite identifier in the calculation center. The effectiveness of the decoupling approach is tested and verified by the STK.The simulation results obtained by the STK are more meaningful than those obtained by Matlab.
基金This work is supported by NNSFC Nos 61603383 and CXJJ-16Z212.
文摘Purpose–The purpose of this paper is to investigate the time-varying finite-time formation tracking control problem for multiple unmanned aerial vehicle systems under switching topologies,where the states of the unmanned aerial vehicles need to form desired time-varying formations while tracking the trajectory of the virtual leader in finite time under jointly connected topologies.Design/methodology/approach–A consensus-based formation control protocol is constructed to achieve the desired formation.In this paper,the time-varying formation is specified by a piecewise continuously differentiable vector,while the finite-time convergence is guaranteed by utilizing a non-linear function.Based on the graph theory,the finite-time stability of the close-loop system with the proposed control protocol under jointly connected topologies is proven by applying LaSalle’s invariance principle and the theory of homogeneity with dilation.Findings–The effectiveness of the proposed protocol is verified by numerical simulations.Consequently,the proposed protocol can successfully achieve the predefined time-varying formation in finite time under jointly connected topologies while tracking the trajectory generated by the leader.Originality/value–This paper proposes a solution to simultaneously solve the control problems of time-varying formation tracking,finite-time convergence,and switching topologies.