The bending problem of a thin rectangular plate with in-plane variable stiffness is studied. The basic equation is formulated for the two-opposite-edge simply supported rectangular plate under the distributed loads. T...The bending problem of a thin rectangular plate with in-plane variable stiffness is studied. The basic equation is formulated for the two-opposite-edge simply supported rectangular plate under the distributed loads. The formulation is based on the assumption that the flexural rigidity of the plate varies in the plane following a power form, and Poisson's ratio is constant. A fourth-order partial differential equation with variable coefficients is derived by assuming a Levy-type form for the transverse displacement. The governing equation can be transformed into a Whittaker equation, and an analytical solution is obtained for a thin rectangular plate subjected to the distributed loads. The validity of the present solution is shown by comparing the present results with those of the classical solution. The influence of in-plane variable stiffness on the deflection and bending moment is studied by numerical examples. The analytical solution presented here is useful in the design of rectangular plates with in-plane variable stiffness.展开更多
In this paper the concept of first boundary condition (i)(i = 0, 1, 2,…, n) is proposed based on [1], the existence of two times spline interpolant under first boundary condition is proved using constructivity me...In this paper the concept of first boundary condition (i)(i = 0, 1, 2,…, n) is proposed based on [1], the existence of two times spline interpolant under first boundary condition is proved using constructivity method and the uniqueness of the two times spline interpolant under first boundary condition(n) is proved too.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 11072177)
文摘The bending problem of a thin rectangular plate with in-plane variable stiffness is studied. The basic equation is formulated for the two-opposite-edge simply supported rectangular plate under the distributed loads. The formulation is based on the assumption that the flexural rigidity of the plate varies in the plane following a power form, and Poisson's ratio is constant. A fourth-order partial differential equation with variable coefficients is derived by assuming a Levy-type form for the transverse displacement. The governing equation can be transformed into a Whittaker equation, and an analytical solution is obtained for a thin rectangular plate subjected to the distributed loads. The validity of the present solution is shown by comparing the present results with those of the classical solution. The influence of in-plane variable stiffness on the deflection and bending moment is studied by numerical examples. The analytical solution presented here is useful in the design of rectangular plates with in-plane variable stiffness.
文摘In this paper the concept of first boundary condition (i)(i = 0, 1, 2,…, n) is proposed based on [1], the existence of two times spline interpolant under first boundary condition is proved using constructivity method and the uniqueness of the two times spline interpolant under first boundary condition(n) is proved too.