The mechanism and kinetics of electrocatalytic oxidation of formic acid at Pt electrodes is discussed in detail based on previous electrochemical in-situ ATR-FTIRS data [Langmuir 22, 10399 (2006)and Angewa. Chem. In...The mechanism and kinetics of electrocatalytic oxidation of formic acid at Pt electrodes is discussed in detail based on previous electrochemical in-situ ATR-FTIRS data [Langmuir 22, 10399 (2006)and Angewa. Chem. Int. Ed. 50, 1159 (2011)]. A kinetic model with formic acid adsorption (and probably the simultaneous C-H bond activation) as the rate determining step, which contributes to the majority of reaction current for formic acid oxi- dation, was proposed for the direct pathway. The model simulates well the IR spectroscopic results obtained under conditions where the poisoning effect of carbon monoxide (CO) is negligible and formic acid concentration is below 0.1 mol/L. The kinetic simulation predicts that in the direct pathway formic acid oxidation probably only needs one Pt atom as active site, formate is the site blocking species instead of being the active intermediate. We review in detail the conclusion that formate pathway (with either 1st or 2nd order reaction kinetics) is the direct pathway, possible origins for the discrepancies are pointed out.展开更多
Formic acid (HCOOH) decomposition at Pt film electrode has been studied by electrochem- ical in situ FTIR spectroscopy under attenuated-total-reflection configuration, in order to clarify whether bridge-bonded forma...Formic acid (HCOOH) decomposition at Pt film electrode has been studied by electrochem- ical in situ FTIR spectroscopy under attenuated-total-reflection configuration, in order to clarify whether bridge-bonded formate (HCOOD) is the reactive intermediate for COad for-mation from HCOOH molecules. When switching from HCOOH-free solution to HCOOH- containing solution at constant potential (E=0.4 V vs. RHE), we found that immediately upon solution switch COad formation rate is the highest, while surface coverage of formate is zero, then after COad formation rate decreases, while formate coverage reaches a steady state coverage quickly within ca. 1 s. Potential step experiment from E=0.75 V to 0.35 V, reveals that formate band intensity drops immediately right after the potential step, while the COad signal develops slowly with time. Both facts indicate that formate is not the reactive intermediate for formic acid dehydration to CO.展开更多
The electrochemical CO_(2)reduction reaction(CO_(2)RR),driven by renewable energy,provides a potential carbon-neutral avenue to convert CO_(2)into valuable fuels and feedstocks.Conversion of CO_(2)into formic acid/for...The electrochemical CO_(2)reduction reaction(CO_(2)RR),driven by renewable energy,provides a potential carbon-neutral avenue to convert CO_(2)into valuable fuels and feedstocks.Conversion of CO_(2)into formic acid/formate is considered one of the economical and feasible methods,owing to their high energy densities,and ease of distribution and storage.The separation of formic acid/formate from the reaction mixtures accounts for the majority of the overall CO_(2)RR process cost,while the increment of product concentration can lead to the reduction of separation cost,remarkably.In this paper,we give an overview of recent strategies for highly concentrated formic acid/formate products in CO_(2)RR.CO_(2)RR is a complex process with several different products,as it has different intermediates and reaction pathways.Therefore,this review focuses on recent study strategies that can enhance targeted formic acid/formate yield,such as the all-solid-state reactor design to deliver a high concentration of products during the reduction of CO_(2)in the electrolyzer.Firstly,some novel electrolyzers are introduced as an engineering strategy to improve the concentration of the formic acid/formate and reduce the cost of downstream separations.Also,the design of planar and gas diffusion electrodes(GDEs)with the potential to deliver high-concentration formic acid/formate in CO_(2)RR is summarized.Finally,the existing technological challenges are highlighted,and further research recommendations to achieve high-concentration products in CO_(2)RR.This review can provide some inspiration for future research to further improve the product concentration and economic benefits of CO_(2)RR.展开更多
基金This work was supported by one hundred Tal- ents' Program of the Chinese Academy of Science, the National Natural Science Foundation of China (No.21273215), 973 program from the Ministry of Sci- ence and Technology of China (No.2010CB923302).
文摘The mechanism and kinetics of electrocatalytic oxidation of formic acid at Pt electrodes is discussed in detail based on previous electrochemical in-situ ATR-FTIRS data [Langmuir 22, 10399 (2006)and Angewa. Chem. Int. Ed. 50, 1159 (2011)]. A kinetic model with formic acid adsorption (and probably the simultaneous C-H bond activation) as the rate determining step, which contributes to the majority of reaction current for formic acid oxi- dation, was proposed for the direct pathway. The model simulates well the IR spectroscopic results obtained under conditions where the poisoning effect of carbon monoxide (CO) is negligible and formic acid concentration is below 0.1 mol/L. The kinetic simulation predicts that in the direct pathway formic acid oxidation probably only needs one Pt atom as active site, formate is the site blocking species instead of being the active intermediate. We review in detail the conclusion that formate pathway (with either 1st or 2nd order reaction kinetics) is the direct pathway, possible origins for the discrepancies are pointed out.
文摘Formic acid (HCOOH) decomposition at Pt film electrode has been studied by electrochem- ical in situ FTIR spectroscopy under attenuated-total-reflection configuration, in order to clarify whether bridge-bonded formate (HCOOD) is the reactive intermediate for COad for-mation from HCOOH molecules. When switching from HCOOH-free solution to HCOOH- containing solution at constant potential (E=0.4 V vs. RHE), we found that immediately upon solution switch COad formation rate is the highest, while surface coverage of formate is zero, then after COad formation rate decreases, while formate coverage reaches a steady state coverage quickly within ca. 1 s. Potential step experiment from E=0.75 V to 0.35 V, reveals that formate band intensity drops immediately right after the potential step, while the COad signal develops slowly with time. Both facts indicate that formate is not the reactive intermediate for formic acid dehydration to CO.
基金support by the University of Southern Queensland(USQ)and Australian Research Council(ARC)Discovery Project DP190101782funded through Future Fellowship FT220100166 and Laureate Fellowship FL170100086 by the Australian Research Council(ARC).
文摘The electrochemical CO_(2)reduction reaction(CO_(2)RR),driven by renewable energy,provides a potential carbon-neutral avenue to convert CO_(2)into valuable fuels and feedstocks.Conversion of CO_(2)into formic acid/formate is considered one of the economical and feasible methods,owing to their high energy densities,and ease of distribution and storage.The separation of formic acid/formate from the reaction mixtures accounts for the majority of the overall CO_(2)RR process cost,while the increment of product concentration can lead to the reduction of separation cost,remarkably.In this paper,we give an overview of recent strategies for highly concentrated formic acid/formate products in CO_(2)RR.CO_(2)RR is a complex process with several different products,as it has different intermediates and reaction pathways.Therefore,this review focuses on recent study strategies that can enhance targeted formic acid/formate yield,such as the all-solid-state reactor design to deliver a high concentration of products during the reduction of CO_(2)in the electrolyzer.Firstly,some novel electrolyzers are introduced as an engineering strategy to improve the concentration of the formic acid/formate and reduce the cost of downstream separations.Also,the design of planar and gas diffusion electrodes(GDEs)with the potential to deliver high-concentration formic acid/formate in CO_(2)RR is summarized.Finally,the existing technological challenges are highlighted,and further research recommendations to achieve high-concentration products in CO_(2)RR.This review can provide some inspiration for future research to further improve the product concentration and economic benefits of CO_(2)RR.