期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Improving Local Temperature Rise in Rotational Incremental Sheet Forming Process by Modifying Forming Parameters Using Response Surface Method
1
作者 李丽华 王进 《Journal of Donghua University(English Edition)》 EI CAS 2017年第3期453-458,共6页
In rotational incremental sheet forming( RISF) process,the friction heating of rotational tool could lead to local temperature rise of the sheet and cause the improvement of sheet's formability.Lightweight metal,s... In rotational incremental sheet forming( RISF) process,the friction heating of rotational tool could lead to local temperature rise of the sheet and cause the improvement of sheet's formability.Lightweight metal,such as magnesium alloy,could be deformed by RISF without additional heating. The objective of this study is to investigate the effects of forming parameters,namely,tool rotational speed,feed-rate,step size and wall angle,on the local temperature rise. Using response surface methodology and central composite design( CCD) experimental design,the significance,sequence of parameters and regression models would be analyzed with AZ31 B as the experimental material,and 3D response surface plots would be shown. Combined with actual processing conditions,the measures to improve the local temperature rise by modifying each parameter would be discussed in the end. The results showed that hierarchy of the parameters with respect to the significance of their effects on the local temperature at the side wall was: feed-rate,step size,and rotational speed,while at the bottom it was: feed-rate,step size,wall angle, and rotational speed, and no significant interaction appeared. It was found that the most significant parameter was not rotational speed,but feed-rate,followed by step size,for both test positions. In addition, the local temperature would increase by elevating step size,wall angle,rotating rate,and bringing down of feed-rate. 展开更多
关键词 rotational incremental sheet forming(RISF) response surface forming parameters local temperature rise
下载PDF
Plastic deformation of magnesium alloy with different forming parameters during ultrasonic vibration-assisted single-point incremental forming
2
作者 Chun Jian Su Ting Ting Xu +3 位作者 Ke Zhang Ke Zhang Shu Mei Lou Qing Wang 《Rare Metals》 SCIE EI CAS CSCD 2022年第11期3878-3886,共9页
The research of forming parameters on the ultrasonic vibration single-point incremental forming of magnesium alloy plastic deformation can provide a theoretical basis for the establishment of the forming parameters.Ac... The research of forming parameters on the ultrasonic vibration single-point incremental forming of magnesium alloy plastic deformation can provide a theoretical basis for the establishment of the forming parameters.According to the forming characteristics of magnesium alloy sheet,a new method of ultrasonic vibration-as sis ted single-point incremental forming was proposed.The influence of forming parameters on the plastic deformation of magnesium alloy was studied by finite element simulation and experimentation.The influence of vibration frequency,amplitude,friction coefficient,and tool head size on stress and thinning rate of magnesium alloy during ultrasonic vibration-as sis ted single-point asymptotic forming was studied.The results show that the vibration frequency of 20 kHz and forming tool radius of about 5 mm are beneficial for plastic deformation magnesium alloy in ultrasonic vibration-assisted single-point incremental forming.With vibration amplitude increasing,the maximum shear stress tends to decrease as a whole,but at the amplitude of 0.16 mm,the thinning rate is large and fracture occurs easily.With friction coefficient increasing,the maximum shear stress tends to increase,and there is a good linear relationship between the maximum thinning rate and the friction coefficient. 展开更多
关键词 Magnesium alloy Ultrasonic vibration Incremental forming forming parameters Plastic deformation
原文传递
Experimental Study on Springback of Sheet Metal Single Point Incremental Forming
3
作者 LIANG Ying GAO Lin WEI Hong-yu LU Ren-wei 《International Journal of Plant Engineering and Management》 2011年第1期60-64,共5页
Sheet metal single point incremental forming (SPIF) is a new technology for flexible process. The springback phenomenon in single point incremental forming has been discussed. Effects of forming angle and shape of t... Sheet metal single point incremental forming (SPIF) is a new technology for flexible process. The springback phenomenon in single point incremental forming has been discussed. Effects of forming angle and shape of the part are analysed using simple experimental method. Tool diameter, sheet thickness, step size, material parameters and the interaction of them are also analysed by using orthogonal test. The results show that the primary factor af- fecting springback is forming angle. In addition, springback is decreased when the specimen has a larger forming angle. The order of the four factors that influence springback is tool diameter, sheet thickness, step size and material parameters. The forming precision will increase if springabck is decreased by optimizing the forming parameters. 展开更多
关键词 incremental forming SPRINGBACK orthogonal test forming parameters
下载PDF
Planar morphology and controlling factors of the gullies in the Yuanmou Dry-hot Valley based on field investigation 被引量:3
4
作者 DENG Qingchun MIAO Fang +5 位作者 ZHANG Bin LUO Mingliang LIU Hui LIU Xiaojiao QIN Fachao LIU Gangcai 《Journal of Arid Land》 SCIE CSCD 2015年第6期778-793,共16页
The plane form of a gully can provide a basis for evaluating the gully volume and erosion rate, acting process, and evolutionary stage. For describing the planar characteristics of a permanent gully and understanding ... The plane form of a gully can provide a basis for evaluating the gully volume and erosion rate, acting process, and evolutionary stage. For describing the planar characteristics of a permanent gully and understanding their controlling factors, this study, utilizing a total station and GPS RTK, measured the shoulder lines and channel curves of 112 gullies in six sites of the Yuanmou Dry-hot Valley and then mapped them by Arc GIS software and calculated nine parameters. The results showed that the channel lengths range from 10.88 to 249.11 m; the widths range from 6.20 to 40.99 m; the perimeters range from 54.11 to 541.67 m; the gully areas range from 153.02 to 6,930.30 m2; the left-side areas range from 92.93 to 4,027.20 m2; and the right-side areas range from 63.65 to 3,539.77 m2. The slightly sinuous and straight gullies account for 73.21% of the total gullies; the quantity of the right skewed gullies is 8.93% greater than that of the left skewed ones based on the symmetry ratio; the shape ratios range from 1.12 to 1.40 and the morphology ratios from 0.038 to 1.294; the fractal dimension is 1.192. Gullies in different sites have diverse planar characteristics. Except for the symmetry index, which was close to a negatively skewed distribution, all of the other parameters had the characteristic of positively skewed distribution. The gully area is related to the length and width, but the gully length has a weak correlation with the width. The evolutionary stage, topographic conditions, strata, soil properties, and piping erosion played very important roles in the gully planar morphology. This study could provide useful information for controlling gully erosion and safeguarding human habitation and engineering buildings. 展开更多
关键词 gully plane form morphological parameters controlling factors Yuanmou Dry-hot Valley
下载PDF
Amorphous forming ranges of Al-Fe-Nd-Zr system predicted by Miedema and geometrical models 被引量:3
5
作者 张雷 陈红梅 +1 位作者 欧阳义芳 杜勇 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第4期343-351,共9页
A method based on the semi-empirical Miedema model and a geometrical model was used to study the glass forming abili-ties (GFA) and the amorphous forming ranges of Al-Fe-Nd-Zr system and its constituent ternary syst... A method based on the semi-empirical Miedema model and a geometrical model was used to study the glass forming abili-ties (GFA) and the amorphous forming ranges of Al-Fe-Nd-Zr system and its constituent ternary systems. The amorphous forming composition ranges were analyzed based on different criteria such asΔGam-ss and PHSS (PHSS=ΔHchem (ΔSC/R)(ΔSσ/R)) for Al-Fe-Nd system. The predicted amorphous forming range was in good agreement with the experimental results. The results showed that the criterion ofΔGam-ss was more accurate, and agreed well with the experiment results. The Gibbs free energy differenceΔGam-ss and pa-rameter PHSS were then used to predict the amorphous forming composition range for the rest of the constitutive ternary systems of Al-Fe-Nd-Zr. In addition, the amorphous forming composition ranges of the (Al-Fe-Zr)100-xNdx (x=50, 60, 70) systems were predicted byΔGam-ss and the modified parameter PHSS. The Gibbs free energy of Al10(Fe1-xZrx)30Nd60 were also calculated. The GFA parameter PHSS indicated that the composition with the highest GFA was Al33.5Fe13.5Zr3Nd50 for the (Al-Fe-Zr)50Nd50 system, Al28.8Fe10Zr1.2Nd60 for the (Al-Fe-Zr)40Nd60 system and Al22.8Fe6.9Zr0.3Nd70 for the (Al-Fe-Zr)30Nd70 system, and the results suggested that those alloys with high content of Al had higher GFA. The appropriate content of neodymium and zirconium resulted in the lower value of PHSS and increased the GFA obviously. 展开更多
关键词 Al-Fe-Nd-Zr alloy amorphous forming range Miedema model glass forming ability parameter rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部