A novel method for the regeneration of cation exchange resins by aluminum (A1) salts was investigated in order to improve the regeneration efficiency of resins and reduce the dosage of regenerant. The influences of...A novel method for the regeneration of cation exchange resins by aluminum (A1) salts was investigated in order to improve the regeneration efficiency of resins and reduce the dosage of regenerant. The influences of AP+ concentration and the pH of regeneration solution on resin transformation had been studied. The desalination experi- ments were carried out to evaluate the characteristics of the A1 form resins. Experimental results showed that the regeneration rate of resins was strictly dependent on AP+ concentration and the pH of the solution. Compared to the conventional regeneration method, the Al form mixed bed exhibited the same desalination capability as the H form mixed bed (MB), and the total organic carbon (TOC) removal was up to 90%, clearly higher than that of the H form. Al salt solution could be utilized repeatedly to regenerate Al form resins.展开更多
Electro-assisted regeneration(EAR)for the mixed bed of strongly acidic cation and weakly basic anion exchange resins with the Al(OH)_(3) suspension in a three-compartment cell was investigated.The desalination experim...Electro-assisted regeneration(EAR)for the mixed bed of strongly acidic cation and weakly basic anion exchange resins with the Al(OH)_(3) suspension in a three-compartment cell was investigated.The desalination experiments were carried out to evaluate the characteristic of the regenerated mixed resins.Experimental results showed that the efficiency of resin regeneration was strictly dependent on the voltage,regeneration time,and feed regenerant flow rate.The amount of the effluent reached 50 times the volume of the resins bed,and the conductivity was less than 1.0 ms/cm.Compared to the conventional ER,the total effluent volume of EAR was about 1000 mL more than that of ER under the same conditions,and the outlet conductivity was significantly lower.The desalination and regeneration reaction mechanisms of the mixed resins indicated the regeneration efficiency of resin with Al(OH)_(3) as the regenerant was much higher than that with H2O.展开更多
文摘A novel method for the regeneration of cation exchange resins by aluminum (A1) salts was investigated in order to improve the regeneration efficiency of resins and reduce the dosage of regenerant. The influences of AP+ concentration and the pH of regeneration solution on resin transformation had been studied. The desalination experi- ments were carried out to evaluate the characteristics of the A1 form resins. Experimental results showed that the regeneration rate of resins was strictly dependent on AP+ concentration and the pH of the solution. Compared to the conventional regeneration method, the Al form mixed bed exhibited the same desalination capability as the H form mixed bed (MB), and the total organic carbon (TOC) removal was up to 90%, clearly higher than that of the H form. Al salt solution could be utilized repeatedly to regenerate Al form resins.
文摘Electro-assisted regeneration(EAR)for the mixed bed of strongly acidic cation and weakly basic anion exchange resins with the Al(OH)_(3) suspension in a three-compartment cell was investigated.The desalination experiments were carried out to evaluate the characteristic of the regenerated mixed resins.Experimental results showed that the efficiency of resin regeneration was strictly dependent on the voltage,regeneration time,and feed regenerant flow rate.The amount of the effluent reached 50 times the volume of the resins bed,and the conductivity was less than 1.0 ms/cm.Compared to the conventional ER,the total effluent volume of EAR was about 1000 mL more than that of ER under the same conditions,and the outlet conductivity was significantly lower.The desalination and regeneration reaction mechanisms of the mixed resins indicated the regeneration efficiency of resin with Al(OH)_(3) as the regenerant was much higher than that with H2O.