期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Innovation for forming aluminum alloy thin shells at ultra-low temperature by the dual enhancement effect 被引量:8
1
作者 Fan Xiaobo Yuan Shijian 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第3期99-103,共5页
Integral thin shells made of high strength aluminum alloys are urgently needed in new generation transportation equipment. There are challenges to overcoming the co-existing problems of wrinkling and splitting by the ... Integral thin shells made of high strength aluminum alloys are urgently needed in new generation transportation equipment. There are challenges to overcoming the co-existing problems of wrinkling and splitting by the cold forming and hot forming processes. An innovative technology of ultra-low temperature forming has been invented for aluminum alloy thin shells by the new phenomenon of ‘dual enhancement effect’. That means plasticity and hardening are enhanced simultaneously at ultra-low temperatures. In this perspective, the dual enhancement effect is described, and the development, current state and prospects of this new forming method are introduced. This innovative method can provide a new approach for integral aluminum alloy components with large size, ultra-thin thickness, and high strength. An integral tank dome of rocket with 2 m in diameter was formed by using a blank sheet with the same thickness as the final component, breaking through the limit value of thickness-diameter ratio. 展开更多
关键词 aluminum alloy thin shell ultra-low temperature forming dual enhancement effect
下载PDF
Formability of AZ31 Mg alloy sheets within medium temperatures 被引量:6
2
作者 Lei Wang Qi Qiao +1 位作者 Yang Liu Xiu Song 《Journal of Magnesium and Alloys》 SCIE EI CAS 2013年第4期312-317,共6页
The stretching tests of the commercial AZ31 Mg alloy were conducted at 130 ℃, 170 ℃, 210 ℃, at the forming speeds of 10 mm/min and 50 mm/min, respectively. The formability of AZ31 sheets at high temperature was eva... The stretching tests of the commercial AZ31 Mg alloy were conducted at 130 ℃, 170 ℃, 210 ℃, at the forming speeds of 10 mm/min and 50 mm/min, respectively. The formability of AZ31 sheets at high temperature was evaluated by forming limit diagrams (FLD). The fracture morphologies were analyzed using a scanning electron microscope. The results show that the FLD of AZ31 Mg alloy is affected by the forming temperature, in another word, the formability increases with the increasing of the forming temperature. That may be because the non-basal slip system starts to move by thermal activation at high forming temperature. It is also demonstrated that the formability of the AZ31 Mg alloy is on the decline with the increasing of the forming speed. The slipping performs thoroughly to release the stress during the deformation if the forming speed decreases. In addition, the higher the forming temperature is, the more obvious the effect of the forming speed is. The forming temperature is the main dominating factor on the formability of AZ31 Mg alloy. 展开更多
关键词 AZ31 Mg alloy The warm formability forming temperature forming speed
下载PDF
A STUDY ON THE STRUCTURE AND PROPERTIES OF POLYBUTYLALDEHYDE FORMED IN LOW TEMPERATURE PLASMA
3
作者 刘学恕 姚广 +2 位作者 朱育芬 张光华 刘倩 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1992年第3期266-269,共4页
The polybutylaldehyde obtained by plasma polymerization was investigated by means of IR, X-ray diffraction, GC-MS, elementary analysis, TEM, electron diffraction and contact angle measurements etc. The results showed ... The polybutylaldehyde obtained by plasma polymerization was investigated by means of IR, X-ray diffraction, GC-MS, elementary analysis, TEM, electron diffraction and contact angle measurements etc. The results showed that the polymer formed in plasma is amorphous crosslinked polymer, and its backbone is made of carbon atoms. The surface energy of the polymer film is independent of the polymerization conditions. No addition reaction has taken place in the carbonyl group of butylaldehyde in the plasma condition. The result of the wettability measurements showed that the polymer film is generally hydrophobic and the surface energy of the film is about 41 dyn/cm, in which the dispersion force contribution is the majority. The electron diffraction proved that some crystal substance, even the single crystals were present in the polymer. X-ray diffraction also proved the presence of crystal and showed about 15% crystaUinity fraction. 展开更多
关键词 GC MS IR FIGURE A STUDY ON THE STRUCTURE AND PROPERTIES OF POLYBUTYLALDEHYDE FORMED IN LOW temperature PLASMA
下载PDF
Determination of inner pressure for fluid inclusions by Raman spectroscopy and its application 被引量:4
4
作者 Haifei Zheng Erwei Qiao Yuping Yang Tiyu Duan 《Geoscience Frontiers》 SCIE CAS 2011年第3期403-407,共5页
Using a Diamond Anvil Cell combined with micro Raman spectroscopy, the quantitative relations among Raman shifts, pressure and temperature were obtained for the vibration of O-H in H2O-NaCl, C-O in CO3^2-, S-O in SO4^... Using a Diamond Anvil Cell combined with micro Raman spectroscopy, the quantitative relations among Raman shifts, pressure and temperature were obtained for the vibration of O-H in H2O-NaCl, C-O in CO3^2-, S-O in SO4^2- and C-H in n-heptane-cyclohexane. Based on the quantitative relationships obtained, it is possible to determine the inner pressure for single fluid inclusions and to further determine the isochore of the systems. It is not only helpful to obtain the forming temperatures and pressures of the enclosing minerals, but also to be able to provide information concerning the chemical compositions of the fluid inclusions. 展开更多
关键词 Raman spectroscopy Fluid inclusion Inner pressure Isochore line forming temperature andpressure of minerals
下载PDF
Optimizing microstructure and mechanical properties of heat-treated Al-Zn-Mg-Cu alloy by indirect hot deformation technology 被引量:3
5
作者 ZHANG Quan-da SUN Fu-zhen +1 位作者 LIU Meng LIU Wen-cai 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第11期3544-3556,共13页
In this paper,the indirect thermal tensile experiments of 7075 aluminum alloy including the pre-deformation process at room temperature and the final heat tensile process were carried out,the plastic deformation behav... In this paper,the indirect thermal tensile experiments of 7075 aluminum alloy including the pre-deformation process at room temperature and the final heat tensile process were carried out,the plastic deformation behavior and forming limit of the material in the compound forming process were investigated considering three pre-deformation amounts 4%,9%,14%,two strain rates 0.001 s^(-1),0.01 s^(-1) and four forming temperatures 300℃,350℃,400℃,450℃.In the indirect hot forming process,the material is sensitive to the pre-deformation,strain rate,and forming temperature,when the strain rate is 0.01 s^(-1),the pre-deformation amount is 4%,and the forming temperature is 400℃,respectively,the maximum tensile deformation is 50 mm.Finally,taking the process in which the forming temperature is 450℃ as an example,according to the observation of the microstructure appearance of fracture,the fracture type in the hot forming process was judged as the ductile fracture.By analyzing the microstructure of the specimen treated with the quenching and artificial aging process,the eutectic T(AlZnMgCu)phase and α(Al)matrix formed a network of non-equilibrium alpha binary eutectic. 展开更多
关键词 strain rate PRE-DEFORMATION forming temperature AA7075 compound tensile
下载PDF
Effect of Rare Earth and Transition Metal Elements on the Glass Forming Ability of Mechanical Alloyed Al–TM–RE Based Amorphous Alloys 被引量:3
6
作者 Ram S.Maurya Tapas Laha 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第11期1118-1124,共7页
The present work aims to compare the amorphous phase forming ability of ternary and quaternary Al based alloys (Al86Ni8Y6, Al86GNi6Y6Co2, Al86NigLa6 and Al86Ni8Y45La15) synthesized via mechanical alloying by varying... The present work aims to compare the amorphous phase forming ability of ternary and quaternary Al based alloys (Al86Ni8Y6, Al86GNi6Y6Co2, Al86NigLa6 and Al86Ni8Y45La15) synthesized via mechanical alloying by varying the composition, i.e. fully or partially replacing rare earth (RE) and transition metal (TM) elements based on similar atomic radii and coordination number. X-ray diffraction and high resolution transmission electron microscopy study revealed that the amorphization process occurred through formation of various intermetallic phases and nanocrystalline FCC Al. Fully amorphous phase was obtained for the alloys not containing lanthanum, whereas the other alloys containing La showed partial amorphization with reappearance of intermetallic phases attributed to mechanical crystallization. Differential scanning calorimetry study confirmed better thermal stability with wider transformation temperature for the alloys without La. 展开更多
关键词 Al-TM-RE amorphous alloy Mechanical alloying Glass forming ability Microstructural transformation Intermetallics Glass transition temperature
原文传递
Chemical stability of simulated waste forms Zr1–xNdxSiO4–x/2: Influence of temperature, pH and their combined effects
7
作者 王兰 卢喜瑞 +6 位作者 舒小艳 丁艺 易发成 马登生 任卫 边亮 吴彦霖 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第7期709-715,共7页
The chemical stability of simulated waste forms Zr_(1–x)Nd_xSiO_(4–x/2) was investigated using the static leach test(MCC-1) with lixiviants of three pH values(pH=4, 6.7 and 10) at three temperature points(4... The chemical stability of simulated waste forms Zr_(1–x)Nd_xSiO_(4–x/2) was investigated using the static leach test(MCC-1) with lixiviants of three pH values(pH=4, 6.7 and 10) at three temperature points(40, 90 and 150 oC) for periods ranging from 1 to 42 d, and the influence of temperature, pH, as well as their combined effects were explored in detail. The results showed that all the normalized release rate of Nd firstly decreased with leaching time and closed to equilibrium after 14 d. As the temperature increased, the normalized release rate of Nd also increased, but it was no more than 3×10^(–5) g/(m^2·d). And, the normalized release rate of Nd reached the highest values(~5×10^(–5) g/(m^2·d)) when pH=4, whilst the normalized release rate of Nd remained the lowest value(~1×10^(–5) g/(m^2·d)) near neutral environment(pH=6.7). 展开更多
关键词 nuclear waste waste form zircon chemical stability temperature pH rare earths
原文传递
Equilibrium Crystallization Temperature of Syndiotactic Polystyrene γ Form
8
作者 Hai Wang Chun-Ji Wu +1 位作者 Dong-Mei Cui Yong-Feng Men 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第6期749-755,共7页
The crystallization behavior of syndiotactic polystyrene(s PS) γ form undergoing annealing at various temperatures was investigated using the thermodynamic phase diagram based on Strobl's crystallization theory. O... The crystallization behavior of syndiotactic polystyrene(s PS) γ form undergoing annealing at various temperatures was investigated using the thermodynamic phase diagram based on Strobl's crystallization theory. On the basis of the differential scanning calorimetric results, it was observed that γ form melt-recrystallization occurred at a higher temperature with the increasing lamellar thickness, which resulted from the pre-annealing at the elevating temperature after acetone induced crystallization. Further temperature dependent small-angle X-ray scattering(SAXS) measurement revealed the evolution of the γ form lamellae upon heating until phase transition, involving three different regimes: lamellae stable region(25-90 °C), melt-recrystallization region(90-185 °C) and pre-phase transition region(185-195 °C). As a result, recrystallization line, equilibrium recrystallization line and melting line were developed for the s PS γ form crystallization process. Since the melt of γ form involved a γ-to-α/β form phase transition, the melting line was also denoted as the phase transition line in this special case. Therefore, the equilibrium crystallization temperature and melting(phase transition) temperatures were determined at around 390 and 220 °C on the basis of the thermodynamic phase diagram of the s PS γ form. 展开更多
关键词 Syndiotactic polystyrene γ form Crystallization behavior Equilibrium crystallization temperature Equilibrium melting temperature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部