期刊文献+
共找到124,407篇文章
< 1 2 250 >
每页显示 20 50 100
Prediction and optimization of flue pressure in sintering process based on SHAP
1
作者 Mingyu Wang Jue Tang +2 位作者 Mansheng Chu Quan Shi Zhen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期346-359,共14页
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a... Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect. 展开更多
关键词 sintering process flue pressure shapley additive explanation PREDICTION OPTIMIZATION
下载PDF
Spark Plasma Sintering of Mg-based Alloys:Microstructure,Mechanical Properties,Corrosion Behavior,and Tribological Performance 被引量:1
2
作者 Alessandro M.Ralls Mohammadreza Daroonparvar Pradeep L.Menezes 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期405-442,共38页
Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the co... Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing. 展开更多
关键词 Spark plasma sintering Magnesium alloys NANOCRYSTALLINE TRIBOLOGY Mechanical properties Corrosion
下载PDF
Forming limit and failure behavior of fiber metal laminates under low-constraint conditions
3
作者 Yao WANG Feng DING +4 位作者 Yong LI Yunhua ZHANG Sifa ZHENG Libin ZHAO Ning HU 《Chinese Journal of Aeronautics》 2025年第1期638-653,共16页
Fiber Metal Laminates(FMLs),as high-performance composite materials,demonstrate exceptional potential in a wide range of applications,such as aeronautical and astronautical industries.However,the traditional cured FML... Fiber Metal Laminates(FMLs),as high-performance composite materials,demonstrate exceptional potential in a wide range of applications,such as aeronautical and astronautical industries.However,the traditional cured FMLs possess complex interlayer stresses and low forming limits,restricting further promotion and application of FMLs.Low-constraint FMLs exhibit a lower forming resistance and better formability due to no curing during the forming process;however,the formation mechanism and response are not clear.This paper presents the Forming Limit Diagram(FLD)of low-constraint GLARE(glass fiber reinforced aluminum laminates)based on the forming limit test,and compares it with the conventionally cured laminates to evaluate the differences in the forming limit.In addition,combined with the analysis of failure mechanism and micro-deformation mechanism of specimens,the influence of different temperatures(20–80℃)and forming states(width)on the deformation performance of laminates is further explored.The results reveal that the forming limit curve of low-constraint laminates shifts up with the increase of temperature,the forming limit initially increases with the increase of width,then followed by a gradual decrease,and the maximum principal strain of low-constraint laminates is increased by 29% at 80℃ compared to 20℃.The cured laminate has a principal strain range of 0–0.02,while the low-constraint laminates have a principal strain range of 0.03–0.14.Compared with cured laminates,low-constraint laminates possess a higher forming limit due to the improvement in deformable degree between layers by resin flow and fiber slippage,which enhances their formability.This study is expected to serve as a reference for establishing forming limit criteria and optimizing forming schemes for low-constraint laminates. 展开更多
关键词 Fiber Metal Laminates(FMLs) GLARE Low-constraint state forming limit Failure mechanism
原文传递
A new multi-DOF envelope forming process for fabricating spiral bevel gears with back taper tooth
4
作者 Xinghui HAN Yanhui WANG +3 位作者 Lin HUA Wuhao ZHUANG Fangyan ZHENG Wei FENG 《Chinese Journal of Aeronautics》 2025年第1期568-585,共18页
Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF ... Spiral bevel gears are critical transmission components,and are widely used in the aerospace field.This paper proposes a new multi-DOF envelope forming process for fabricating spiral bevel gears.Firstly,the multi-DOF envelope forming principle of spiral bevel gears is proposed.Secondly,the design methods for the envelope tool geometry and movement are proposed based on the envelope geometry and movement relationships.Thirdly,the metal flow and tooth filling laws are revealed through 3D FE simulation of the multi-DOF envelope forming process of a typical spiral bevel gear.Fourthly,a new method for separating the envelope tool and the formed spiral bevel gear with back taper tooth is proposed to avoid their interference.Finally,experiments on multi-DOF envelope forming of this typical spiral bevel gear are conducted using new heavy load multi-DOF envelope forming equipment.The simulation and experimental results show the feasibility of the proposed multi-DOF envelope forming process for fabricating spiral bevel gears with back taper tooth and the corresponding process design methods. 展开更多
关键词 Multi-DOF envelope forming Spiral bevel gear Back taper tooth Metal flow Process design
原文传递
Boosting thermoelectric efficiency of Ag_(2)Se through cold sintering process with Ag nano-precipitate formation
5
作者 Dejwikom Theprattanakorn Thanayut Kaewmaraya Supree Pinitsoontorn 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2760-2769,共10页
Silver selenide(Ag_(2)Se)stands out as a promising thermoelectric(TE)material,particularly for applications near room temper-atures.This research presents a novel approach for the fabrication of bulk Ag_(2)Se samples ... Silver selenide(Ag_(2)Se)stands out as a promising thermoelectric(TE)material,particularly for applications near room temper-atures.This research presents a novel approach for the fabrication of bulk Ag_(2)Se samples at a relatively low temperature(170℃)using the cold sintering process(CSP)with AgNO_(3)solution as a transient liquid agent.The effect of AgNO_(3)addition during CSP on the micro-structure and TE properties was investigated.The results from phase,composition and microstructure analyses showed that the introduc-tion of AgNO_(3)solution induced the formation of Ag nano-precipitates within the Ag_(2)Se matrix.Although the nano-precipitates do not af-fect the phase and crystal structure of orthorhombicβ-Ag_(2)Se,they suppressed crystal growth,leading to reduced crystallite sizes.The samples containing Ag nano-precipitates also exhibited high porosity and low bulk density.Consequently,these effects contributed to sig-nificantly enhanced electrical conductivity and a slight decrease in the Seebeck coefficient when small Ag concentrations were incorpor-ated.This resulted in an improved average power factor from~1540μW·m^(−1)·K^(−2)for pure Ag_(2)Se to~1670μW·m^(−1)·K^(−2)for Ag_(2)Se with additional Ag precipitates.However,excessive Ag addition had a detrimental effect on the power factor.Furthermore,thermal conductiv-ity was effectively suppressed in Ag_(2)Se fabricated using AgNO_(3)-assisted CSP,attributed to enhanced phonon scattering at crystal inter-faces,pores,and Ag nano-precipitates.The highest figure-of-merit(zT)of 0.92 at 300 K was achieved for the Ag_(2)Se with 0.5wt%Ag dur-ing CSP fabrication,equivalent to>20%improvement compared to the controlled Ag_(2)Se without extra Ag solution.Thus,the process outlined in this study presents an effective strategy to tailor the microstructure of bulk Ag_(2)Se and enhance its TE performance at room temperature. 展开更多
关键词 THERMOELECTRIC silver selenide CHALCOGENIDE cold sintering process nano-precipitate
下载PDF
Effects of laser energy density on forming accuracy and tensile strength of selective laser sintering resin coated sands 被引量:17
6
作者 Xu Zhifeng Liang Pei +2 位作者 Yang Wei Li Sisi Cai Changchun 《China Foundry》 SCIE CAS 2014年第3期151-156,共6页
Baozhu sand particles with size between 75 μm and 150 μm were coated by resin with the ratio of 1.5 wt.% of sands. Laser sintering experiments were carried out to investigate the effects of laser energy density(E = ... Baozhu sand particles with size between 75 μm and 150 μm were coated by resin with the ratio of 1.5 wt.% of sands. Laser sintering experiments were carried out to investigate the effects of laser energy density(E = P/v), with different laser power(P) and scanning velocity(v), on the dimensional accuracy and tensile strength of sintered parts. The experimental results indicate that with the constant scanning velocity, the tensile strength of sintered samples increases with an increase in laser energy density; while the dimensional accuracy apparently decreases when the laser energy density is larger than 0.032 J·mm-2. When the laser energy density is 0.024 J·mm-2, the tensile strength shows no obvious change; but when the laser energy density is larger than 0.024 J·mm-2, the sample strength is featured by the initial increase and subsequent decrease with simultaneous increase of both laser power and scanning velocity. In this study, the optimal energy density range for laser sintering is 0.024-0.032 J·mm-2. Moreover, samples with the best tensile strength and dimensional accuracy can be obtained when P = 30-40 W and v = 1.5-2.0 m·s-1. Using the optimized laser energy density, laser power and scanning speed, a complex coated sand mould with clear contour and excellent forming accuracy has been successfully fabricated. 展开更多
关键词 selective laser sintering coated sands energy density tensile strength forming accuracy
下载PDF
Trifunctional strategy for the design and synthesis of a Ni-CeO_(2)@SiO_(2)catalyst with remarkable low-temperature sintering and coking resistance for methane dry reforming 被引量:5
7
作者 Sixue Lin Jing Wang +5 位作者 Yangyang Mi Senyou Yang Zheng Wang Wenming Liu Daishe Wu Honggen Peng 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第10期1808-1820,共13页
In this study,a trifunctional strategy was developed to prepare a confined Ni-based catalyst(Ni-CeO_(2)@SiO_(2))for dry reforming of methane(DRM)of two main greenhouse gases-CO_(2)and CH_(4).The Ni-CeO_(2)@SiO_(2)cata... In this study,a trifunctional strategy was developed to prepare a confined Ni-based catalyst(Ni-CeO_(2)@SiO_(2))for dry reforming of methane(DRM)of two main greenhouse gases-CO_(2)and CH_(4).The Ni-CeO_(2)@SiO_(2)catalyst was fabricated by utilizing the confinement effect of the SiO_(2)shell and the synergistic interaction between Ni-Ce and the decoking effect of CeO_(2).The catalysts were systematically characterized via X-ray diffraction,N_(2 )adsorption/desorption,transmission electron microscopy,energy dispersive X-ray spectroscopy,hydrogen temperature reduction and desorption set by program,oxygen temperature program desorption,Raman spectroscopy,thermogravimetric analysis,and in situ diffuse reflectance infrared Fourier transform spectroscopy measurements to reveal their physicochemical properties and reaction mechanism.The Ni-CeO_(2)@SiO_(2)catalyst exhibited higher activity and stability than the catalyst synthesized via the traditional impregnation method.In addition,no carbon deposition was detected over Ni-CeO_(2)@SiO_(2)after a 100 h durability test at 800℃,and the average particle size of Ni nanoparticles(NPs)in the catalyst increased from 5.01 to 5.77 nm.Remarkably,Ni-CeO_(2)@SiO_(2)also exhibited superior low-temperature stability;no coke deposition was observed when the catalyst was reacted at 600℃ for 20 h.The high coking and sintering resistance of this confined Ni-based DRM catalyst can be attributed to its trifunctional effect.The trifunctional strategy developed in this study could be used as a guideline to design other high-performance catalysts for CO_(2)and CH4 dry forming and accelerate their industrialization. 展开更多
关键词 Methane dry forming Low-temperature stability Coke resistance Tri functional strategy CO_(2)utilization
下载PDF
Microstructure and magnetic properties of anisotropic Nd-Fe-B magnets prepared by spark plasma sintering and hot deformation 被引量:3
8
作者 李小强 李力 +3 位作者 胡可 陈志成 屈盛官 杨超 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3142-3151,共10页
Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering tem... Bulk anisotropic Nd-Fe-B magnets were prepared from hydrogen-disproportionation-desorption-recombination(HDDR) powders via spark plasma sintering(SPS) and subsequent hot deformation. The influence of sintering temperature on the structure and magnetic properties of the spark plasma sintered Nd-Fe-B magnets were studied. The remanence Br, intrinsic coercivity Hcj, and the maximum energy product(BH)max, of sintered Nd-Fe-B magnets first increase and then decrease with the increase of sintering temperature, TSPS, from 650 °C to 900 °C. The optimal magnetic properties can be obtained when TSPS is 800 °C. The Nd-Fe-B magnet sinter treated at 800 °C was subjected to further hot deformation. Compared with the starting HDDR powders or the SPS treated magnets, the hot-deformed magnets present more obvious anisotropy and possess much better magnetic properties due to the good c-axis texture formed in the deformation process. The anisotropic magnet deformed at 800 °C with 50% compression ratio has a microstructure consisting of well aligned and platelet-shaped Nd2Fe14 B grains without abnormal grain growth and exhibits excellent magnetic properties parallel to the pressing axis. 展开更多
关键词 Nd-Fe-B magnet hydrogen-disproportionation-desorption-recombination(HDDR) spark plasma sintering hot deformation magnetic property
下载PDF
Solid-phase sintering process and forced convective heat transfer performance of porous-structured micro-channels 被引量:2
9
作者 白鹏飞 易子川 +1 位作者 唐彪 周国富 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期900-906,共7页
A solid-phase sintering process for the low-cost fabrication of composite micro-channels was developed. Three kinds of composite micro-channels with metallic porous structures were designed. The sintering process was ... A solid-phase sintering process for the low-cost fabrication of composite micro-channels was developed. Three kinds of composite micro-channels with metallic porous structures were designed. The sintering process was studied and optimized to obtain porous-structured micro-channels with high porosity. The flow resistance and heat transfer performance in the composite micro-channels were investigated. The composite micro-channels show acceptable flow resistance, significant enhancement of heat transfer and dramatic improvement of flow boiling stability, which indicates a promising prospect for the application in forced convective heat transfer. 展开更多
关键词 solid-phase sintering composite micro-channels porous structure flow resistance convective heat transfer
下载PDF
Plastic forming simulations of cold isostatic pressing of selective laser sintered components 被引量:2
10
作者 杜艳迎 史玉升 魏青松 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期1118-1122,共5页
A combined method of selective laser sintering (SLS) and cold isostatic pressing (CIP) was applied to manufacturing metal parts rapidly. Finite element method was used to predict final dimensions and decrease cost... A combined method of selective laser sintering (SLS) and cold isostatic pressing (CIP) was applied to manufacturing metal parts rapidly. Finite element method was used to predict final dimensions and decrease cost. The simulations of CIP of selective laser sintered parts were carried out by Drucker-Prager-Cap constitutive model with ABAQUS computer program. The property of metal powder was measured by CIP experiments. The results show the rubber bag and the friction coefficient have little influence on results of simulations. The parts only have uniform shrinkage and have no obvious distortion in shape. The results of simulations show a good agreement with the experimental results and the calculated results, indicating that the Drucker-Prager-Cap model is an effective model to simulate CIP process. The simulations could give a useful direction to forming process of the CIP of selective laser sintered components. K 展开更多
关键词 cold isostatic pressing stainless steel plastic forming SIMULATION
下载PDF
Effect of sintering temperature on cycling performance and rate performance of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2 被引量:2
11
作者 李向群 熊训辉 +1 位作者 王志兴 陈启元 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期4023-4029,共7页
LiNi0.8Co0.1Mn0.1O2 powder was prepared by mixing LiOH·H2O and co-precipitated Ni0.8Co0.1Mn0.1(OH)2 at a molar ratio of 1:1.05, followed by sintering at different temperatures. The effects of temperature on th... LiNi0.8Co0.1Mn0.1O2 powder was prepared by mixing LiOH·H2O and co-precipitated Ni0.8Co0.1Mn0.1(OH)2 at a molar ratio of 1:1.05, followed by sintering at different temperatures. The effects of temperature on the morphology, structure and electrochemical performance were extensively studied. SEM and XRD results demonstrate that the sintering temperature has large influence on the morphology and structure and suitable temperature is very important to obtain spherical materials and suppresses the ionic distribution. The charge-discharge tests show that the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 powders becomes better with the increase of temperature from 700 ℃ to 750 ℃ and higher temperature will deteriorate the performance. Although both of materials obtained at 750 ℃ and 780 ℃ demonstrate almost identical cyclic stability at 2C rate, which delivers 71.9%retention after 200 cycles, the rate performance of powder calcined at 780 ℃ is much poorer than that at 750 ℃. The XRD results demonstrate that the poor performance is ascribed to more severe ionic distribution caused by higher temperature. 展开更多
关键词 lithium ion battery LiNi0.8CO0.1Mn0.1O2 sintering temperature cycling performance rate performance
下载PDF
Investigation on sintering and deformation strengthening of Mo-Cu alloy 被引量:1
12
作者 胡保全 王延忠 刘和平 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2017年第2期173-177,共5页
Mo-Swt%Cu nanocomposite powders were fabricated by mechanical alloying, and full density alloy was obtained via liquid-phase sintering and post-treatment process. The microstructure of Mo-8wt%Cu alloy was investigated... Mo-Swt%Cu nanocomposite powders were fabricated by mechanical alloying, and full density alloy was obtained via liquid-phase sintering and post-treatment process. The microstructure of Mo-8wt%Cu alloy was investigated by scanning elec-tron microscope (SEM) , and the effects of process parameters on relative density, tensile strength and elongation were stud-ied. The results indicate that the relative density of Mo-Cu alloy is 98. 6% after sintering at 1 250℃ for 30 min, and its micro-structure is composite network The full density of Mo-Cu alloy can be obtained when specimens are treated through deforma-tion strengthening process of rotating forging and hydrostatic extrusion The tensile strength and elongation rate are 576 MPa and 5. 8% ,respectively, when hydrostatic extrusion deformation degree is 40%. 展开更多
关键词 mechanical alloying Mo-Cu alloy liquid-phase sintering deformation strengthening
下载PDF
Sintering formation of oriented linear cutting copper fibers 被引量:1
13
作者 潘敏强 彭海峰 +1 位作者 吴秋瑜 魏小玲 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1215-1224,共10页
The formation mechanism of oriented linear cutting copper sintered felt was analyzed. The influences of sintering temperature, sintering atmosphere and sintering time on the sintering formation were investigated. And ... The formation mechanism of oriented linear cutting copper sintered felt was analyzed. The influences of sintering temperature, sintering atmosphere and sintering time on the sintering formation were investigated. And the tensile mechanical properties of sintering fibers under different sintering conditions were also analyzed. The results indicate that the formation of sintered necks in the contacted area due to the materials migration of microstructures on the surfaces of fibers promotes the tight connection of oriented linear cutting copper fibers. It is also found that both sintering temperature and sintering atmosphere show important effects on the sintering formation while the influence of sintering time is not so obvious. Sintering at 800 °C for 60 min under low temperature reduction can produce sintered necks to make fibers tightly connect together and maintain the coarse microstructure on the surface of fibers, and the best tensile mechanical property can be obtained as well. 展开更多
关键词 sintering POROSITY fibers mechanical properties
下载PDF
Spark plasma sintering of tungsten-based WTaVCr refractory high entropy alloys for nuclear fusion applications 被引量:1
14
作者 Yongchul Yoo Xiang Zhang +4 位作者 Fei Wang Xin Chen Xing-Zhong Li Michael Nastasi Bai Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期146-154,共9页
W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a po... W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a powder metallurgy process combining mechanical alloying and spark plasma sintering (SPS). The SPSed samples contained two phases, in which the matrix is RHEA with a body-centered cubic structure, while the oxide phase was most likely Ta2VO6through a combined analysis of X-ray diffraction (XRD),energy-dispersive spectroscopy (EDS), and selected area electron diffraction (SAED). The higher oxygen affinity of Ta and V may explain the preferential formation of their oxide phases based on thermodynamic calculations. Electron backscatter diffraction (EBSD) revealed an average grain size of 6.2μm. WTaVCr RHEA showed a peak compressive strength of 2997 MPa at room temperature and much higher micro-and nano-hardness than W and other W-based RHEAs in the literature. Their high Rockwell hardness can be retained to at least 1000°C. 展开更多
关键词 refractory high entropy alloy plasma-facing material fusion reactor spark plasma sintering
下载PDF
Preparation of dense Ta-LLZO/MgO composite Li-ion solid electrolyte:Sintering, microstructure, performance and the role of MgO 被引量:11
15
作者 Xiao Huang Yang Lu +3 位作者 Zhen Song Tongping Xiu Michael EBadding Zhaoyin Wen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期8-16,共9页
Cubic phase Li7La3Zr2O12(LLZO),a member of the Li–Garnet family,is a promising solid electrolyte and has been widely studied in recent years.However,LLZO samples prepared via conventional ambient air sintering report... Cubic phase Li7La3Zr2O12(LLZO),a member of the Li–Garnet family,is a promising solid electrolyte and has been widely studied in recent years.However,LLZO samples prepared via conventional ambient air sintering reported in the published literature often contain large grains with lower than desired(<94%)relative density.In this study,a non-contact method of co-firing with mother powder method is proposed to prepare high-quality Ta-doped LLZO–MgO composite ceramics.By sintering at 1150℃for 5 h,the ceramics can reach relative density of 98.2%,conductivity of 5.17×10^-4 S cm^-1 at 25℃and fracture strength of 150 MPa.The sintered samples have uniform fine-grained microstructure and high critical current densities of 0.75–0.95 mA cm-2 at room temperature in Li–Li symmetry cell with Au modification.In addition,systematic sintering experiments and characterizations are conducted to explore the function of MgO in inhibiting the Ta-LLZO grain growth and its existing form inside the composite ceramics. 展开更多
关键词 Li-Garnet Solid electrolyte Mechanism Critical current density sintering
下载PDF
High-temperature performance prediction of iron ore fines and the ore-blending programming problem in sintering 被引量:8
16
作者 Bing-ji Yan Jian-liang Zhang +2 位作者 Hong-wei Guo Ling-kun Chen Wei Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第8期741-747,共7页
The high-temperature performance of iron ore fmes is an important factor in optimizing ore blending in sintering. However, the application of linear regression analysis and the linear combination method in most other ... The high-temperature performance of iron ore fmes is an important factor in optimizing ore blending in sintering. However, the application of linear regression analysis and the linear combination method in most other studies always leads to a large deviation from the desired results. In this study, the fuzzy membership functions of the assimilation ability temperature and the liquid fluidity were proposed based on the fuzzy mathematics theory to construct a model for predicting the high-temperature performance of mixed iron ore. Comparisons of the prediction model and experimental results were presented. The results illustrate that the prediction model is more accurate and effective than previously developed models. In addition, fuzzy constraints for the high-temperature performance of iron ore in this research make the results of ore blending more comparable. A solution for the quantitative calculation as well as the programming of fuzzy constraints is also introduced. 展开更多
关键词 iron ores BLENDING sintering high temperature properties prediction PROGRAMMING
下载PDF
Improving the sintering performance of blends containing Canadian specularite concentrate by modifying the binding medium 被引量:5
17
作者 Feng Zhang De-qing Zhu +2 位作者 Jian Pan Ya-ping Mo Zheng-qi Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第6期598-608,共11页
Canadian specularite concentrate(CSC) possesses high total iron grade and low impurity content. However, due to the poor granulating performance and weak reactivity of CSC at high temperature, the proportion of CSC ... Canadian specularite concentrate(CSC) possesses high total iron grade and low impurity content. However, due to the poor granulating performance and weak reactivity of CSC at high temperature, the proportion of CSC used in sintering blends is restricted. In this research, the effects of fine limonite, slake lime, and bentonite particles on the granulation performance of blends containing a high ratio of CSC were studied through granulation test. Based on the test results, the effects of modification of the binding medium on the sintering performance of blends containing a high ratio of CSC were revealed by the sintering pot test. Both the granulation property and sintering performance of blends with a high proportion of CSC were improved by modifying the binding medium. 展开更多
关键词 iron ore binding medium specula^ite CONCENTRATE sintering performance
下载PDF
Influence of gangue existing states in iron ores on the formation and flow of liquid phase during sintering 被引量:3
18
作者 Guo-liang Zhang Sheng-li Wu +3 位作者 Shao-guo Chen Bo Su Zhi-gang Que Chao-gang Hou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第10期962-968,共7页
Gangue existing states largely affect the high-temperature characteristics of iron ores. Using a micro-sintering method and scan- ning electron microscopy, the effects of gangue content, gangue type, and gangue size o... Gangue existing states largely affect the high-temperature characteristics of iron ores. Using a micro-sintering method and scan- ning electron microscopy, the effects of gangue content, gangue type, and gangue size on the assimilation characteristics and fluidity of liquid phase of five different iron ores were analyzed in this study. Next, the mechanism based on the reaction between gangues and sintering mate- dais was unraveled. The results show that, as the SiO2 levels increase in the iron ores, the lowest assimilation temperature (LAT) decreases, whereas the index of fluidity of liquid phase (IFL) increases. Below 1.5wt%, Al2O3 benefits the assimilation reaction, but higher concentra- tions proved detrimental. Larger quartz particles increase the SiO2 levels at the local reaction interface between the iron ore and CaO, thereby reducing the LAT. Quartz-gibbsite is more conductive to assimilation than kaolin. Quartz-gibbsite and kaolin gangues encourage the forma- tion of liquid-phase low-Al2O3-SFCA with high IFL and high-Al2O3-SFCA with low IFL, respectively. 展开更多
关键词 iron ores ore sintering ASSIMILATION liquid phase FLUIDITY
下载PDF
High-temperature mechanical properties and deformation behavior of high Nb containing TiAl alloys fabricated by spark plasma sintering 被引量:5
19
作者 Xin Lu Li-hua Zhao +2 位作者 Lang-ping Zhu Bin Zhang Xuan-hui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第4期354-359,共6页
A high Nb containing TiA1 alloy was prepared from the pre-alloyed powder of Ti-45Al-8.5Nb-0.2B-0.2W-0.02Y (at%) by spark plasma sintering (SPS). Its high-temperature mechanical properties and compressive deformati... A high Nb containing TiA1 alloy was prepared from the pre-alloyed powder of Ti-45Al-8.5Nb-0.2B-0.2W-0.02Y (at%) by spark plasma sintering (SPS). Its high-temperature mechanical properties and compressive deformation behavior were investigated in a temperature range of 700 to 1050℃ and a strain rate range of 0.002 to 0.2 s 1. The results show that the high-temperature mechanical properties of the high Nb containing TiA1 alloy are sensitive to deformation temperature and strain rate, and the sensitivity to strain rate tends to rise with the deformation temperature increasing. The hot workability of the alloy is good at temperatures higher than 900℃, while fracture occurs at lower temperatures. The flow curves of the samples compressed at or above 900℃ exhibit obvious flow softening after the peak stress. Un- der the deformation condition of 900-1050℃ and 0.002-0.2 s 1, the interrelations of peak flow stress, strain rate, and deformation tempera- ture follow the Arrhenius' equation modified by a hyperbolic sine function with a stress exponent of 5.99 and an apparent activation energy of 441.2 kJ.mol-1. 展开更多
关键词 titanium-aluminum alloys spark plasma sintering (SPS) mechanical properties DEformATION activation energy
下载PDF
Microstructure and forming mechanism of metals subjected to ultrasonic vibration plastic forming: A mini review
20
作者 Qinghe Cui Xuefeng Liu +4 位作者 Wenjing Wang Shaojie Tian Vasili Rubanik Vasili Rubanik Jr. Dzmitry Bahrets 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1322-1332,共11页
Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli... Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed. 展开更多
关键词 ultrasonic vibration plastic forming crystal structure MICROSTRUCTURE forming mechanism
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部