Thermodynamic analysis of the reforming of methane with carbon dioxide alone ("dry reforming") and with carbon dioxide and steam together ("mixed reforming") is performed as part of a project which investigate...Thermodynamic analysis of the reforming of methane with carbon dioxide alone ("dry reforming") and with carbon dioxide and steam together ("mixed reforming") is performed as part of a project which investigates the suitability of these endothermic reactions for the storage of solar thermal energy. The Gibbs free energy minimization method was employed to identify thermodynamically optimal operating conditions for dry reforming as well as mixed reforming with a desired H2/CO molar ratio of 2. The non-stoichiometric equilibrium model was developed using FactSage software to conduct the thermodynamic calculations for carbon formation, H2/CO ratio, CH4 conversion and H2 yield as a function of reaction temperature, pressure and reactant molar ratios. Thermodynamic calculations demonstrate that in the mixed reforming process, optimal operating conditions in a carbon-free zone are under H2O/CH4 /CO2 =1.0/1.0/0.5, p = 1 to 10 bar and T = 800 to 850℃ for the production of syngas with a H2 /CO molar ratio of 2. Under the optimal conditions, the maximum H2 yield of 88.0% is achieved at 1 bar and 850℃ with a maximum CH4 conversion of 99.3%. In the dry reforming process, a carbon formation regime is always present at a CO2/CH4 molar ratio of 1 for T = 700 1000℃ and p = 1-30 bar, whereas a carbon-free regime can be obtained at a CO2/CH4 molar ratio greater than 1.5 and T≥800℃.展开更多
The paper starts with a brief overview to the necessity of sheet metal forming simulation and the complexity of automobile panel forming, then leads to finite element analysis (FEA) which is a powerful simulation too...The paper starts with a brief overview to the necessity of sheet metal forming simulation and the complexity of automobile panel forming, then leads to finite element analysis (FEA) which is a powerful simulation tool for analyzing complex three-dimensional sheet metal forming problems. The theory and features of the dynamic explicit finite element methods are introduced and the available various commercial finite element method codes used for sheet metal forming simulation in the world are discussed,and the civil and international status quo of automobile panel simulation as well. The front door outer panel of one certain new automobile is regarded as one example that the dynamic explicit FEM code Dynaform is used for the simulation of the front door outer panel forming process. Process defects such as ruptures are predicted. The improving methods can be given according to the simulation results. Foreground of sheet metal forming simulation is outlined.展开更多
With considering the influence of equivalent plastic strain on void-damage and taking Lemaitre damage equivalent stress as plastic potential, based on continuous damage mechanics theory, a new criterion for ductile fr...With considering the influence of equivalent plastic strain on void-damage and taking Lemaitre damage equivalent stress as plastic potential, based on continuous damage mechanics theory, a new criterion for ductile fracture is derived. The two key material constants in the criterion are determined by the combination of tension tests with FE (finite element) simulation. On the basis of the values of stress and strain calculated from commercial finite element software, the forming limit in cylindrical deep drawing of annealed aluminum alloy LY12(M) is predicted by means of the new ductile fracture criterion. Experiments verify that the predicted results are in agreement with the experimental ones. Hence, it is reliable to predict the forming limit in deep drawing by means of the new ductile fracture criterion.展开更多
The commercial application results showed that the polymetallic reforming catalysts PRT exhibited high activity, good selectivity and stability. The performance of said catalysts could be restored completely through r...The commercial application results showed that the polymetallic reforming catalysts PRT exhibited high activity, good selectivity and stability. The performance of said catalysts could be restored completely through regeneration. After long period of operation, the activity of said catalysts still exhibited good sensitivity to temperature rise. Compared with the PR series catalysts, the PRT series catalysts had obviously better stability and lower coking rate.展开更多
This article makes an analysis on the major technical difficulties encountered in the process of revamping and expanding the capacity of the continuous catalytic reforming (CCR) unit from 600 kt/a to 800 kt/a at Tia...This article makes an analysis on the major technical difficulties encountered in the process of revamping and expanding the capacity of the continuous catalytic reforming (CCR) unit from 600 kt/a to 800 kt/a at Tianjin Petrochemical Company. The requirements for expanding the CCR unit capacity to 800 kt/a have been met through adopting the low carbon-make PS-Ⅵ catalyst, properly lowering the RONC of the reformate, and appropriately retrofitting the towers and furnaces while keeping the reaction system, the catalyst regeneration system and the recycle hydrogen compressor intact. The calibration results have revealed that the liquid yield of reformate products, the octane rating of reformate, the pure hydrogen yield, the aromatics yield and the overall conversion rate all have met the revamp design targets.展开更多
In order to adapt to the trend of "energy saving and emission reduction" and impel the practical application of semi solid processing (SSP) in China, the progress and application of semi-solid theory in China have...In order to adapt to the trend of "energy saving and emission reduction" and impel the practical application of semi solid processing (SSP) in China, the progress and application of semi-solid theory in China have been reviewed briefly and systematically. It was emphasized on basic theories, such as formation of globular grains, theology, high pressure solidification and plastic deformation and applications, such as material design, preparation of semi-solid billets (slurries), thixoforming and application status, which are based on the advantage of semi-solid processing. The results show that the gap of SSP between world level and China exists, especially in application technologies, including market recognition, application fields exploiting, developing of billets (slurries) preparation technologies with low cost and special equipments. The prospect of semi-solid forming development path in China is presented. And we hope that application of SSP has great new breakthrough and development and China wilt be changed from a large metal processing country to a powerful metal processing country.展开更多
It is pointed out that there was serious weakness w he n using the energy method for studying compressive plastic instability in sheet forming in the past. Where applying the deduced instability strengths to relativ e...It is pointed out that there was serious weakness w he n using the energy method for studying compressive plastic instability in sheet forming in the past. Where applying the deduced instability strengths to relativ e engineering analysis, theoretical solutions were away from practices. Its basi c reason is that simplified process in mathematical analysis of elastic bending energy was completely applied to that of plastic bending energy. Where the cambe r expressed by function of displacement normal to a plate was approximated to re alistic deflective camber, the displacement of deflected plate to compressed dir ection was neglected. With the aid of the improved instability strengths, the pr edictions on both critical buckling dimension of blank in cup deep-drawing with out blankholder through cylindrical die or conical die and the minimum blankhold er pressure to prevent buckling under constant load are universally in agreement with both experimental results and experiential data. On the bases of above-mentioned improvement, the approximate expressions for bo th the curvature and the twist used in equation of the energy of elastic bending are also ameliorated. Thus the obtained general equations for both the energy a nd the work done by internal force in plastic bending of a plate are more precis e than before. In the analyses of plastic buckling of shell with bending moment, the effect of bending moment is considered through the work done by simulative bending for ce. The method proposed in this paper can not only simplify analyses but also ge t practical result.展开更多
Aiming at overcoming the difficulties in integral forming of thin-walled tubes with complex shapes, a novel forming method by inner and outer pressure through viscous was proposed. In this method, by dividing large de...Aiming at overcoming the difficulties in integral forming of thin-walled tubes with complex shapes, a novel forming method by inner and outer pressure through viscous was proposed. In this method, by dividing large deformation of the part into inner and outer pressure forming deformations, the limit deformation of tube part can be increased by several times. Meanwhile, the principle of viscous inner and outer pressure forming was provided, and key problems during the forming process such as reduction of the wall-thickness and instability wrinkling were analyzed. Thereby, the complex curved surface super-alloy GH3044 thin-walled tube with varying diameter ratio of 1.35(the ratio between the maximum and minimum diameters of the part) can be integrally formed by this method. The experimental surface of the formed part is superior in quality and the wall-thickness distribution is uniform. The results show that the viscous inner and outer pressure forming can provide a new approach for integral forming of thin-walled tubes with complex shapes.展开更多
Advanced high-strength steels have been widely used to improve the crashworthiness and lightweight of vehicles.Different from the popular cold stamping,hot forming of boron-alloyed manganese steels,such as 22MnB5,coul...Advanced high-strength steels have been widely used to improve the crashworthiness and lightweight of vehicles.Different from the popular cold stamping,hot forming of boron-alloyed manganese steels,such as 22MnB5,could produce ultra-high-strength steel parts without springback and with accurate control of dimensions.Moreover,hot-formed medium-Mn steels could have many advantages,including better mechanical properties and lower production cost,over hot-formed 22MnB5.This paper reviews the hot forming process in the automotive industry,hot-formed steel grades,and medium-Mn steel grades and their application in hot forming in depth.In particular,the adaptabilities of medium-Mn steels and the presently popular 22MnB5 into hot forming were compared thoroughly.Future research should focus on the technological issues encountered in hot forming of medium-Mn steels to promote their commercialization.展开更多
The forming of sheet metal in a desired and attractive shape is a process that requires an understanding of materials, mechanics and manufacturing principles. Manufacturing a consistent sheet metal component is challe...The forming of sheet metal in a desired and attractive shape is a process that requires an understanding of materials, mechanics and manufacturing principles. Manufacturing a consistent sheet metal component is challenging due to the nonlinear interactions of various material and process parameters. One of the major issues in the manufacturing of inconsistent?sheet metal?parts is springback. Springback is the elastic strain recovery in the material after the tooling is removed and the final shape of the product depends on the springback amount formed. In this study according to the result of simulation the inverted compensation method is adopted to optimize die surface design. Similarly, to predict and compensate the springback error this study presented an analytical approach of forming process in a stepwise modification of the automobile roof panel. Moreover, based on?Dynaform?and?finite element analysis of sheet metal stamping simulation the sprinback in automobile roof panel is predicted and compensated.?In addition, this study examines the significant requirements of the sheet metal forming precision of automobile body and the simulation of forming, stamping and springback of automobile roof panel is carried out, and the result of simulation also is analyzed.展开更多
We investigated the deformation behaviors of Zr_65Cu_17.5Ni_10Al_7.5 in superplastic forming in silicon mould via numerical modeling and experiments. The data needed for the constitutive formulation were obtained from...We investigated the deformation behaviors of Zr_65Cu_17.5Ni_10Al_7.5 in superplastic forming in silicon mould via numerical modeling and experiments. The data needed for the constitutive formulation were obtained from compressive tests to establish a material library for finite-element simulation using a DEFORM 3D software. A constant speed forming process of a micro gear was modeled where the loading force, feature size and amount of deformation in the micro gear in silicon mould were analyzed in detail for the optimal requirements of micro gear forming and the protection of silicon mould. Guided by the modeling parameters, an amorphous metal micro gear was successfully obtained by our home-made superplastic forming system with the optimized parameters (temperature of 683 K, top speed of 0.003 mm/s until the load force reaching limiting value at 1960 N, and a gradually decelerating process for holding the force to the end). Our work gives a good example for optimization of superplastic forming and fabrication of BMGs in microparts.展开更多
Borehole instability and reservoir damage had become the international technical problems of petroleum exploration and development of complicated area, and the water of drilling fluid invading borehole wall and petrol...Borehole instability and reservoir damage had become the international technical problems of petroleum exploration and development of complicated area, and the water of drilling fluid invading borehole wall and petroleum reservoir was the main cause of borehole instability and reservoir damage. In order to prevent the water of drilling fluid invading borehole wall and petroleum reservoir, domestic and foreign scholars recently put forward the technology of ultra-low permeable drilling fluid. Film forming agent was the key treating agent of ultra-low permeable drilling fluid, the film forming agent (HN-1) was developed, which did not affect properties of the drilling fluid and could decrease the filter loss of drilling fluid applied in Enping 24-2 oil field. Based on this research, ultra-low permeable drilling fluid could be applied to Enping 24-2 oil field. By the methods of testing ultra-low permeable drilling fluid properties, the drilling fluid invasion sand-bed depth, drilling fluid high temperature/high pressure (HTHP) sand-bed filter loss, the pressure-bearing ability of rock core and the ability of reservoir protection were studied. By synergistic effect, HN-1 containing the organic silicate and natural fiber polymer modified by organic amine prevented the liquid and solids in drilling fluid invading reservoir, decreased drilling fluid invasion sand-bed depth and drilling fluid HTHP sand-bed filter loss, improved the pressure-bearing ability of rock core and the ability of reservoir protection. The drilling fluid could decrease reservoir damage to the maximal degree, and it offered efficiency guarantee for exploitation Enping 24-2 oil field.展开更多
The increase in car ownership brought about by energy shortages,and environmental crises became more acute.The most effective way to achieve energy saving and emission reduction of car is to improve engine efficiency....The increase in car ownership brought about by energy shortages,and environmental crises became more acute.The most effective way to achieve energy saving and emission reduction of car is to improve engine efficiency.In addition to that,lightweight body is the key.Aluminum,magnesium alloy as significant materials of lightweight,and the application amount in the car body is a significant upward trend.However,there is high cost of material,with immature applied technology and a series of bottleneck problems.All of them affect general application of lightweight materials. This paper focuses on forming process issues for aluminum,magnesium alloy and the solutions to achieve.展开更多
Ni nanocatalysts produced through exsolution have shown strong resistance to particle sintering and carbon coking in a beneficial dry reforming of methane(DRM)reaction utilizing greenhouse gases such as CH_(4)and CO_(...Ni nanocatalysts produced through exsolution have shown strong resistance to particle sintering and carbon coking in a beneficial dry reforming of methane(DRM)reaction utilizing greenhouse gases such as CH_(4)and CO_(2).However,most of the existing oxide supports for exsolution have been limited to perovskite oxide,while studies on fluorite support have been rarely conducted due to the limited solubility despite its excellent redox stability.Here we demonstrate that 3 mol%Ni can be successfully dissolved into the yttria-stabilized zirconia(YSZ)lattice and be further exsolved to the surface in a reducing atmosphere.The YSZ decorated with exsolved Ni nanoparticles shows enhanced catalytic activity for DRM reaction compared to the conventional cermet type of bulk Ni-YSZ.Moreover,the catalytic activity is extremely stable for about 300 h without significant degradation.Overall results suggest that the YSZ-based fluorite structure can be utilized as one of the support oxides for exsolution.展开更多
Recently researchers were interested in hybrid algorithms for optimization problems for several communication systems. In this paper, a novel algorithm based on hybrid PSOGSA technique (combination of Gravitational Se...Recently researchers were interested in hybrid algorithms for optimization problems for several communication systems. In this paper, a novel algorithm based on hybrid PSOGSA technique (combination of Gravitational Search Algorithm and Particle Swarm Optimization) is presented to enhance the performance analysis of beam-forming for smart antennas systems using N elements for Uniform Circular Array (UCA) geometry. Complex excitations (phases) of the array radiation pattern are optimized using hybrid PSOGSA technique for a set of simultaneously incident signals. Our results have shown tremendous improvement over the previous work was done using Uniform Linear Array (ULA) geometry and standard GSA in terms of normalized array factor and computational speed for normalized fitness values.展开更多
Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Gui...Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Guizhou-Guangxi triangle area. The study shows that primary silicified quartz is nonluminescent but quartz in host rocks and secondary silicified quartz are luminescent by the action of cathode rays. Correspondingly, silicon isotope compositions of host rocks, ores and hydro6thermal quartz veins are clearly distinguished. In strata from the Middle Triassic to the “Dachang” host bed, δ30Si of the host rocks ranges from 0.0% ?0.3%, while that of primary ore-forming silicified fluids from ?0.1% to ?0.4%; in the Upper Permian and Lower Carboniferous strata and Indosinian diabase host beds, δ30Si of the host rocks is from ?0.1% to ?0.2% and that of the primary silicified quartz veins from 0.3 % ?0.5 %. This pattern demonstrates the following geochemical mineralization process, primary ore-forming siliceous fluids migrated upwards quickly along the main passages of deep-seated faults from mantle to crust and entered secondary faults where gold deposits were eventually formed as a result of permeation and replacement of the siliceous ore-forming fluids into different ore-bearing strata. This gives important evidence for the fact that ore-forming fluids of this type of gold deposits were mainly derived from upper mantle differentiation and shows good prospects for deep gold deposits and geochemical background for large and superlarge gold deposits.展开更多
MoSi/Ti composite coatings (MoST?), have been deposited by a closed-field unbalanced magnetron sputter ion-plating system. The high ion-current densities at low substrate bias voltage of the system ensures that the Mo...MoSi/Ti composite coatings (MoST?), have been deposited by a closed-field unbalanced magnetron sputter ion-plating system. The high ion-current densities at low substrate bias voltage of the system ensures that the MoST? coatings are characteristic of dense coherent structures, with high adhesion (critical scratch load above 120 N), high load bearing capacity up to 5 GPa., low friction (0.02-0.1), high wear resistance (less than 4xlO"17 m3/N m) even at a relative humidity of 40%, and high temperature resistance up to 350 °C. The successful applications of MoST? coatings in large- scale productions for dry cutting and forming, with increasing lifetime and productivity are presented.展开更多
The stress-based forming limit diagram(FLSD) established with limit stress is independent of the strain paths. Compared with traditional strain-based forming limit diagram(FLD),it is more convenient and practical to u...The stress-based forming limit diagram(FLSD) established with limit stress is independent of the strain paths. Compared with traditional strain-based forming limit diagram(FLD),it is more convenient and practical to use as the criterion of forming limit under complex strain paths. The forming limit of 3A21 aluminum alloy sheet was tested and its forming limit diagram(FLD) was determined. Then the FLSD of 3A21 was constituted by transformation formulas between limit strain and limit stress. This FLSD was used in conjunction with LS-DYNA finite element simulations to predict the onset of fracture and limit forming pressure in tube hydroforming. The results indicate that the fracture often occurs in the transition region between corner and straight side of the tube,and the limit forming pressure is 46.4 MPa. The simulation result agrees with the experimental result,and the FLSD is able to predict the forming limit of tube hydroforming with remarkable accuracy.展开更多
The hot Theological forming method was proposed to form the second titanium alloy vane disk. The hot rheological forming process of the TC11 titanium vane disk under a certain temperature and different strain rates wa...The hot Theological forming method was proposed to form the second titanium alloy vane disk. The hot rheological forming process of the TC11 titanium vane disk under a certain temperature and different strain rates was investigated by using the bulk forming software of DEFORM 3D. A series of results including temperature field, equivalent strain distribution, load-stroke curve and rheology procedure were obtained by this finite element method. The rheological forming characteristics were well realized and the forming parameters were determined. The results and analysis show that with decreasing strain rate, the metal flow more equably and the filling of the vane shape is also better. Moreover, the mechanical properties and microstructures of the products produced by this new technique are improved evidently compared with that produced by traditional method.展开更多
Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli...Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed.展开更多
文摘Thermodynamic analysis of the reforming of methane with carbon dioxide alone ("dry reforming") and with carbon dioxide and steam together ("mixed reforming") is performed as part of a project which investigates the suitability of these endothermic reactions for the storage of solar thermal energy. The Gibbs free energy minimization method was employed to identify thermodynamically optimal operating conditions for dry reforming as well as mixed reforming with a desired H2/CO molar ratio of 2. The non-stoichiometric equilibrium model was developed using FactSage software to conduct the thermodynamic calculations for carbon formation, H2/CO ratio, CH4 conversion and H2 yield as a function of reaction temperature, pressure and reactant molar ratios. Thermodynamic calculations demonstrate that in the mixed reforming process, optimal operating conditions in a carbon-free zone are under H2O/CH4 /CO2 =1.0/1.0/0.5, p = 1 to 10 bar and T = 800 to 850℃ for the production of syngas with a H2 /CO molar ratio of 2. Under the optimal conditions, the maximum H2 yield of 88.0% is achieved at 1 bar and 850℃ with a maximum CH4 conversion of 99.3%. In the dry reforming process, a carbon formation regime is always present at a CO2/CH4 molar ratio of 1 for T = 700 1000℃ and p = 1-30 bar, whereas a carbon-free regime can be obtained at a CO2/CH4 molar ratio greater than 1.5 and T≥800℃.
文摘The paper starts with a brief overview to the necessity of sheet metal forming simulation and the complexity of automobile panel forming, then leads to finite element analysis (FEA) which is a powerful simulation tool for analyzing complex three-dimensional sheet metal forming problems. The theory and features of the dynamic explicit finite element methods are introduced and the available various commercial finite element method codes used for sheet metal forming simulation in the world are discussed,and the civil and international status quo of automobile panel simulation as well. The front door outer panel of one certain new automobile is regarded as one example that the dynamic explicit FEM code Dynaform is used for the simulation of the front door outer panel forming process. Process defects such as ruptures are predicted. The improving methods can be given according to the simulation results. Foreground of sheet metal forming simulation is outlined.
文摘With considering the influence of equivalent plastic strain on void-damage and taking Lemaitre damage equivalent stress as plastic potential, based on continuous damage mechanics theory, a new criterion for ductile fracture is derived. The two key material constants in the criterion are determined by the combination of tension tests with FE (finite element) simulation. On the basis of the values of stress and strain calculated from commercial finite element software, the forming limit in cylindrical deep drawing of annealed aluminum alloy LY12(M) is predicted by means of the new ductile fracture criterion. Experiments verify that the predicted results are in agreement with the experimental ones. Hence, it is reliable to predict the forming limit in deep drawing by means of the new ductile fracture criterion.
文摘The commercial application results showed that the polymetallic reforming catalysts PRT exhibited high activity, good selectivity and stability. The performance of said catalysts could be restored completely through regeneration. After long period of operation, the activity of said catalysts still exhibited good sensitivity to temperature rise. Compared with the PR series catalysts, the PRT series catalysts had obviously better stability and lower coking rate.
文摘This article makes an analysis on the major technical difficulties encountered in the process of revamping and expanding the capacity of the continuous catalytic reforming (CCR) unit from 600 kt/a to 800 kt/a at Tianjin Petrochemical Company. The requirements for expanding the CCR unit capacity to 800 kt/a have been met through adopting the low carbon-make PS-Ⅵ catalyst, properly lowering the RONC of the reformate, and appropriately retrofitting the towers and furnaces while keeping the reaction system, the catalyst regeneration system and the recycle hydrogen compressor intact. The calibration results have revealed that the liquid yield of reformate products, the octane rating of reformate, the pure hydrogen yield, the aromatics yield and the overall conversion rate all have met the revamp design targets.
文摘In order to adapt to the trend of "energy saving and emission reduction" and impel the practical application of semi solid processing (SSP) in China, the progress and application of semi-solid theory in China have been reviewed briefly and systematically. It was emphasized on basic theories, such as formation of globular grains, theology, high pressure solidification and plastic deformation and applications, such as material design, preparation of semi-solid billets (slurries), thixoforming and application status, which are based on the advantage of semi-solid processing. The results show that the gap of SSP between world level and China exists, especially in application technologies, including market recognition, application fields exploiting, developing of billets (slurries) preparation technologies with low cost and special equipments. The prospect of semi-solid forming development path in China is presented. And we hope that application of SSP has great new breakthrough and development and China wilt be changed from a large metal processing country to a powerful metal processing country.
文摘It is pointed out that there was serious weakness w he n using the energy method for studying compressive plastic instability in sheet forming in the past. Where applying the deduced instability strengths to relativ e engineering analysis, theoretical solutions were away from practices. Its basi c reason is that simplified process in mathematical analysis of elastic bending energy was completely applied to that of plastic bending energy. Where the cambe r expressed by function of displacement normal to a plate was approximated to re alistic deflective camber, the displacement of deflected plate to compressed dir ection was neglected. With the aid of the improved instability strengths, the pr edictions on both critical buckling dimension of blank in cup deep-drawing with out blankholder through cylindrical die or conical die and the minimum blankhold er pressure to prevent buckling under constant load are universally in agreement with both experimental results and experiential data. On the bases of above-mentioned improvement, the approximate expressions for bo th the curvature and the twist used in equation of the energy of elastic bending are also ameliorated. Thus the obtained general equations for both the energy a nd the work done by internal force in plastic bending of a plate are more precis e than before. In the analyses of plastic buckling of shell with bending moment, the effect of bending moment is considered through the work done by simulative bending for ce. The method proposed in this paper can not only simplify analyses but also ge t practical result.
基金Funded by the National Natural Science Foundation of China(No.51205260)
文摘Aiming at overcoming the difficulties in integral forming of thin-walled tubes with complex shapes, a novel forming method by inner and outer pressure through viscous was proposed. In this method, by dividing large deformation of the part into inner and outer pressure forming deformations, the limit deformation of tube part can be increased by several times. Meanwhile, the principle of viscous inner and outer pressure forming was provided, and key problems during the forming process such as reduction of the wall-thickness and instability wrinkling were analyzed. Thereby, the complex curved surface super-alloy GH3044 thin-walled tube with varying diameter ratio of 1.35(the ratio between the maximum and minimum diameters of the part) can be integrally formed by this method. The experimental surface of the formed part is superior in quality and the wall-thickness distribution is uniform. The results show that the viscous inner and outer pressure forming can provide a new approach for integral forming of thin-walled tubes with complex shapes.
基金The authors acknowledge the financial supports from the National Natural Science Foundation of China(Nos.51861135302 and 51831002)Fundamental Research Funds for the Central Universities,China(No.FRF-TP-18-002C2).
文摘Advanced high-strength steels have been widely used to improve the crashworthiness and lightweight of vehicles.Different from the popular cold stamping,hot forming of boron-alloyed manganese steels,such as 22MnB5,could produce ultra-high-strength steel parts without springback and with accurate control of dimensions.Moreover,hot-formed medium-Mn steels could have many advantages,including better mechanical properties and lower production cost,over hot-formed 22MnB5.This paper reviews the hot forming process in the automotive industry,hot-formed steel grades,and medium-Mn steel grades and their application in hot forming in depth.In particular,the adaptabilities of medium-Mn steels and the presently popular 22MnB5 into hot forming were compared thoroughly.Future research should focus on the technological issues encountered in hot forming of medium-Mn steels to promote their commercialization.
文摘The forming of sheet metal in a desired and attractive shape is a process that requires an understanding of materials, mechanics and manufacturing principles. Manufacturing a consistent sheet metal component is challenging due to the nonlinear interactions of various material and process parameters. One of the major issues in the manufacturing of inconsistent?sheet metal?parts is springback. Springback is the elastic strain recovery in the material after the tooling is removed and the final shape of the product depends on the springback amount formed. In this study according to the result of simulation the inverted compensation method is adopted to optimize die surface design. Similarly, to predict and compensate the springback error this study presented an analytical approach of forming process in a stepwise modification of the automobile roof panel. Moreover, based on?Dynaform?and?finite element analysis of sheet metal stamping simulation the sprinback in automobile roof panel is predicted and compensated.?In addition, this study examines the significant requirements of the sheet metal forming precision of automobile body and the simulation of forming, stamping and springback of automobile roof panel is carried out, and the result of simulation also is analyzed.
基金Funded by the National Natural Science Foundation of China(Nos.51222508,51175211)
文摘We investigated the deformation behaviors of Zr_65Cu_17.5Ni_10Al_7.5 in superplastic forming in silicon mould via numerical modeling and experiments. The data needed for the constitutive formulation were obtained from compressive tests to establish a material library for finite-element simulation using a DEFORM 3D software. A constant speed forming process of a micro gear was modeled where the loading force, feature size and amount of deformation in the micro gear in silicon mould were analyzed in detail for the optimal requirements of micro gear forming and the protection of silicon mould. Guided by the modeling parameters, an amorphous metal micro gear was successfully obtained by our home-made superplastic forming system with the optimized parameters (temperature of 683 K, top speed of 0.003 mm/s until the load force reaching limiting value at 1960 N, and a gradually decelerating process for holding the force to the end). Our work gives a good example for optimization of superplastic forming and fabrication of BMGs in microparts.
文摘Borehole instability and reservoir damage had become the international technical problems of petroleum exploration and development of complicated area, and the water of drilling fluid invading borehole wall and petroleum reservoir was the main cause of borehole instability and reservoir damage. In order to prevent the water of drilling fluid invading borehole wall and petroleum reservoir, domestic and foreign scholars recently put forward the technology of ultra-low permeable drilling fluid. Film forming agent was the key treating agent of ultra-low permeable drilling fluid, the film forming agent (HN-1) was developed, which did not affect properties of the drilling fluid and could decrease the filter loss of drilling fluid applied in Enping 24-2 oil field. Based on this research, ultra-low permeable drilling fluid could be applied to Enping 24-2 oil field. By the methods of testing ultra-low permeable drilling fluid properties, the drilling fluid invasion sand-bed depth, drilling fluid high temperature/high pressure (HTHP) sand-bed filter loss, the pressure-bearing ability of rock core and the ability of reservoir protection were studied. By synergistic effect, HN-1 containing the organic silicate and natural fiber polymer modified by organic amine prevented the liquid and solids in drilling fluid invading reservoir, decreased drilling fluid invasion sand-bed depth and drilling fluid HTHP sand-bed filter loss, improved the pressure-bearing ability of rock core and the ability of reservoir protection. The drilling fluid could decrease reservoir damage to the maximal degree, and it offered efficiency guarantee for exploitation Enping 24-2 oil field.
文摘The increase in car ownership brought about by energy shortages,and environmental crises became more acute.The most effective way to achieve energy saving and emission reduction of car is to improve engine efficiency.In addition to that,lightweight body is the key.Aluminum,magnesium alloy as significant materials of lightweight,and the application amount in the car body is a significant upward trend.However,there is high cost of material,with immature applied technology and a series of bottleneck problems.All of them affect general application of lightweight materials. This paper focuses on forming process issues for aluminum,magnesium alloy and the solutions to achieve.
基金This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)and the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(No.20173020032120)This work also was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2019R1C1C1005801)Partial support from“CO2 utilization battery for hydrogen production based on fault-tolerance deep learning”(1.200097.01)is also acknowledged.
文摘Ni nanocatalysts produced through exsolution have shown strong resistance to particle sintering and carbon coking in a beneficial dry reforming of methane(DRM)reaction utilizing greenhouse gases such as CH_(4)and CO_(2).However,most of the existing oxide supports for exsolution have been limited to perovskite oxide,while studies on fluorite support have been rarely conducted due to the limited solubility despite its excellent redox stability.Here we demonstrate that 3 mol%Ni can be successfully dissolved into the yttria-stabilized zirconia(YSZ)lattice and be further exsolved to the surface in a reducing atmosphere.The YSZ decorated with exsolved Ni nanoparticles shows enhanced catalytic activity for DRM reaction compared to the conventional cermet type of bulk Ni-YSZ.Moreover,the catalytic activity is extremely stable for about 300 h without significant degradation.Overall results suggest that the YSZ-based fluorite structure can be utilized as one of the support oxides for exsolution.
文摘Recently researchers were interested in hybrid algorithms for optimization problems for several communication systems. In this paper, a novel algorithm based on hybrid PSOGSA technique (combination of Gravitational Search Algorithm and Particle Swarm Optimization) is presented to enhance the performance analysis of beam-forming for smart antennas systems using N elements for Uniform Circular Array (UCA) geometry. Complex excitations (phases) of the array radiation pattern are optimized using hybrid PSOGSA technique for a set of simultaneously incident signals. Our results have shown tremendous improvement over the previous work was done using Uniform Linear Array (ULA) geometry and standard GSA in terms of normalized array factor and computational speed for normalized fitness values.
文摘Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Guizhou-Guangxi triangle area. The study shows that primary silicified quartz is nonluminescent but quartz in host rocks and secondary silicified quartz are luminescent by the action of cathode rays. Correspondingly, silicon isotope compositions of host rocks, ores and hydro6thermal quartz veins are clearly distinguished. In strata from the Middle Triassic to the “Dachang” host bed, δ30Si of the host rocks ranges from 0.0% ?0.3%, while that of primary ore-forming silicified fluids from ?0.1% to ?0.4%; in the Upper Permian and Lower Carboniferous strata and Indosinian diabase host beds, δ30Si of the host rocks is from ?0.1% to ?0.2% and that of the primary silicified quartz veins from 0.3 % ?0.5 %. This pattern demonstrates the following geochemical mineralization process, primary ore-forming siliceous fluids migrated upwards quickly along the main passages of deep-seated faults from mantle to crust and entered secondary faults where gold deposits were eventually formed as a result of permeation and replacement of the siliceous ore-forming fluids into different ore-bearing strata. This gives important evidence for the fact that ore-forming fluids of this type of gold deposits were mainly derived from upper mantle differentiation and shows good prospects for deep gold deposits and geochemical background for large and superlarge gold deposits.
文摘MoSi/Ti composite coatings (MoST?), have been deposited by a closed-field unbalanced magnetron sputter ion-plating system. The high ion-current densities at low substrate bias voltage of the system ensures that the MoST? coatings are characteristic of dense coherent structures, with high adhesion (critical scratch load above 120 N), high load bearing capacity up to 5 GPa., low friction (0.02-0.1), high wear resistance (less than 4xlO"17 m3/N m) even at a relative humidity of 40%, and high temperature resistance up to 350 °C. The successful applications of MoST? coatings in large- scale productions for dry cutting and forming, with increasing lifetime and productivity are presented.
基金Project(06012150C) supported by the Fund for Key Program of the "11th 5-year Plan" of Anhui Province, China
文摘The stress-based forming limit diagram(FLSD) established with limit stress is independent of the strain paths. Compared with traditional strain-based forming limit diagram(FLD),it is more convenient and practical to use as the criterion of forming limit under complex strain paths. The forming limit of 3A21 aluminum alloy sheet was tested and its forming limit diagram(FLD) was determined. Then the FLSD of 3A21 was constituted by transformation formulas between limit strain and limit stress. This FLSD was used in conjunction with LS-DYNA finite element simulations to predict the onset of fracture and limit forming pressure in tube hydroforming. The results indicate that the fracture often occurs in the transition region between corner and straight side of the tube,and the limit forming pressure is 46.4 MPa. The simulation result agrees with the experimental result,and the FLSD is able to predict the forming limit of tube hydroforming with remarkable accuracy.
基金Project(02103) support by the Education Ministry of China Project(02A008) supported by the Education Department of Hunan Province and Central South University of Foresty & Technology
文摘The hot Theological forming method was proposed to form the second titanium alloy vane disk. The hot rheological forming process of the TC11 titanium vane disk under a certain temperature and different strain rates was investigated by using the bulk forming software of DEFORM 3D. A series of results including temperature field, equivalent strain distribution, load-stroke curve and rheology procedure were obtained by this finite element method. The rheological forming characteristics were well realized and the forming parameters were determined. The results and analysis show that with decreasing strain rate, the metal flow more equably and the filling of the vane shape is also better. Moreover, the mechanical properties and microstructures of the products produced by this new technique are improved evidently compared with that produced by traditional method.
基金supported by the National Key R&D Program of China(No.2022YFE0121300)the Introduction Plan for High end Foreign Experts,China(No.G2023105001L)the Young Foreign Talent Program,China(No.QN2023105001L).
文摘Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed.