To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the s...To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.展开更多
We investigate the highest weight representations of the q-deformed Virasoro algebra of Hom-type. In order to determine its unitarity and irreducible highest weight representations, we present its Kac determinant form...We investigate the highest weight representations of the q-deformed Virasoro algebra of Hom-type. In order to determine its unitarity and irreducible highest weight representations, we present its Kac determinant formula when q is nonzero and non-root of unity.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 10271074)
文摘To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given.
基金Supported by the National Natural Science Foundation of China(11047030)Supported by the Science and Technology Program of Henan Province(152300410061)
文摘We investigate the highest weight representations of the q-deformed Virasoro algebra of Hom-type. In order to determine its unitarity and irreducible highest weight representations, we present its Kac determinant formula when q is nonzero and non-root of unity.