Over the last few years, the Internet of Things (IoT) has become an omnipresent term. The IoT expands the existing common concepts, anytime and anyplace to the connectivity for anything. The proliferation in IoT offer...Over the last few years, the Internet of Things (IoT) has become an omnipresent term. The IoT expands the existing common concepts, anytime and anyplace to the connectivity for anything. The proliferation in IoT offers opportunities but may also bear risks. A hitherto neglected aspect is the possible increase in power consumption as smart devices in IoT applications are expected to be reachable by other devices at all times. This implies that the device is consuming electrical energy even when it is not in use for its primary function. Many researchers’ communities have started addressing storage ability like cache memory of smart devices using the concept called—Named Data Networking (NDN) to achieve better energy efficient communication model. In NDN, memory or buffer overflow is the common challenge especially when internal memory of node exceeds its limit and data with highest degree of freshness may not be accommodated and entire scenarios behaves like a traditional network. In such case, Data Caching is not performed by intermediate nodes to guarantee highest degree of freshness. On the periodical updates sent from data producers, it is exceedingly demanded that data consumers must get up to date information at cost of lease energy. Consequently, there is challenge in maintaining tradeoff between freshness energy consumption during Publisher-Subscriber interaction. In our work, we proposed the architecture to overcome cache strategy issue by Smart Caching Algorithm for improvement in memory management and data freshness. The smart caching strategy updates the data at precise interval by keeping garbage data into consideration. It is also observed from experiment that data redundancy can be easily obtained by ignoring/dropping data packets for the information which is not of interest by other participating nodes in network, ultimately leading to optimizing tradeoff between freshness and energy required.展开更多
With the expansion of network services,large-scale networks have progressively become common.The network status changes rapidly in response to customer needs and configuration changes,so network configuration changes ...With the expansion of network services,large-scale networks have progressively become common.The network status changes rapidly in response to customer needs and configuration changes,so network configuration changes are also very frequent.However,no matter what changes,the network must ensure the correct conditions,such as isolating tenants from each other or guaranteeing essential services.Once changes occur,it is necessary to verify the after-changed network.Whereas,for the verification of large-scale network configuration changes,many current verifiers show poor efficiency.In order to solve the problem ofmultiple global verifications caused by frequent updates of local configurations in large networks,we present a fast configuration updates verification tool,FastCUV,for distributed control planes.FastCUV aims to enhance the efficiency of distributed control plane verification for medium and large networks while ensuring correctness.This paper presents a method to determine the network range affected by the configuration change.We present a flow model and graph structure to facilitate the design of verification algorithms and speed up verification.Our scheme verifies the network area affected by obtaining the change of the Forwarding Information Base(FIB)before and after.FastCUV supports rich network attributes,meanwhile,has high efficiency and correctness performance.After experimental verification and result analysis,our method outperforms the state-of-the-art method to a certain extent.展开更多
文摘Over the last few years, the Internet of Things (IoT) has become an omnipresent term. The IoT expands the existing common concepts, anytime and anyplace to the connectivity for anything. The proliferation in IoT offers opportunities but may also bear risks. A hitherto neglected aspect is the possible increase in power consumption as smart devices in IoT applications are expected to be reachable by other devices at all times. This implies that the device is consuming electrical energy even when it is not in use for its primary function. Many researchers’ communities have started addressing storage ability like cache memory of smart devices using the concept called—Named Data Networking (NDN) to achieve better energy efficient communication model. In NDN, memory or buffer overflow is the common challenge especially when internal memory of node exceeds its limit and data with highest degree of freshness may not be accommodated and entire scenarios behaves like a traditional network. In such case, Data Caching is not performed by intermediate nodes to guarantee highest degree of freshness. On the periodical updates sent from data producers, it is exceedingly demanded that data consumers must get up to date information at cost of lease energy. Consequently, there is challenge in maintaining tradeoff between freshness energy consumption during Publisher-Subscriber interaction. In our work, we proposed the architecture to overcome cache strategy issue by Smart Caching Algorithm for improvement in memory management and data freshness. The smart caching strategy updates the data at precise interval by keeping garbage data into consideration. It is also observed from experiment that data redundancy can be easily obtained by ignoring/dropping data packets for the information which is not of interest by other participating nodes in network, ultimately leading to optimizing tradeoff between freshness and energy required.
基金supported by the Fundamental Research Funds for the Central Universities(2021RC239)the Postdoctoral Science Foundation of China(2021 M690338)+3 种基金theHainan Provincial Natural Science Foundation of China(620RC562,2019RC096,620RC560)the Scientific Research Setup Fund of Hainan University(KYQD(ZR)1877)the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(QCXM201910)the National Natural Science Foundation of China(61802092,62162021).
文摘With the expansion of network services,large-scale networks have progressively become common.The network status changes rapidly in response to customer needs and configuration changes,so network configuration changes are also very frequent.However,no matter what changes,the network must ensure the correct conditions,such as isolating tenants from each other or guaranteeing essential services.Once changes occur,it is necessary to verify the after-changed network.Whereas,for the verification of large-scale network configuration changes,many current verifiers show poor efficiency.In order to solve the problem ofmultiple global verifications caused by frequent updates of local configurations in large networks,we present a fast configuration updates verification tool,FastCUV,for distributed control planes.FastCUV aims to enhance the efficiency of distributed control plane verification for medium and large networks while ensuring correctness.This paper presents a method to determine the network range affected by the configuration change.We present a flow model and graph structure to facilitate the design of verification algorithms and speed up verification.Our scheme verifies the network area affected by obtaining the change of the Forwarding Information Base(FIB)before and after.FastCUV supports rich network attributes,meanwhile,has high efficiency and correctness performance.After experimental verification and result analysis,our method outperforms the state-of-the-art method to a certain extent.