期刊文献+
共找到38,529篇文章
< 1 2 250 >
每页显示 20 50 100
Granular behaviour under bi-directional shear with constant vertical stress and constant volume
1
作者 Min Zhang Yunming Yang +1 位作者 Hanwen Zhang Qi Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4300-4318,共19页
This paper aims to investigate the role of bi-directional shear in the mechanical behaviour of granular materials and macro-micro relations by conducting experiments and discrete element method(DEM)modelling.The bi-di... This paper aims to investigate the role of bi-directional shear in the mechanical behaviour of granular materials and macro-micro relations by conducting experiments and discrete element method(DEM)modelling.The bi-directional shear consists of a static shear consolidation and subsequent shear under constant vertical stress and constant volume conditions.A side wall node loading method is used to exert bi-directional shear of various angles.The results show that bi-directional shear can significantly influence the mechanical behaviour of granular materials.However,the relationship between bidirectional shear and mechanical responses relies on loading conditions,i.e.constant vertical stress or constant volume conditions.The stress states induced by static shear consolidation are affected by loading angles,which are enlarged by subsequent shear,consistent with the relationship between bidirectional shear and principal stresses.It provides evidence for the dissipation of stresses accompanying static liquefaction of granular materials.The presence of bi-directional principal stress rotation(PSR)is demonstrated,which evidences why the bi-directional shear of loading angles with components in two directions results in faster dissipations of stresses with static liquefaction.Contant volume shearing leads to cross-anisotropic stress and fabric at micro-contacts,but constant vertical stress shearing leads to complete anisotropic stress and fabric at micro-contacts.It explains the differentiating relationship between stress-strain responses and fabric anisotropy under these two conditions.Micromechanical signatures such as the slip state of micro-contacts and coordination number are also examined,providing further insights into understanding granular behaviour under bi-directional shear. 展开更多
关键词 Granular material Bi-directional shear constant vertical stress constant volume Principal stress rotation(PSR) ANISOTROPY
下载PDF
Long-term operation optimization of circulating cooling water systems under fouling conditions
2
作者 Jiarui Liang Yong Tian +3 位作者 Shutong Yang Yong Wang Ruiqi Yin Yufei Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期255-267,共13页
Fouling caused by excess metal ions in hard water can negatively impact the performance of the circulating cooling water system(CCWS)by depositing ions on the heat exchanger's surface.Currently,the operation optim... Fouling caused by excess metal ions in hard water can negatively impact the performance of the circulating cooling water system(CCWS)by depositing ions on the heat exchanger's surface.Currently,the operation optimization of CCWS often prioritizes short-term flow velocity optimization for minimizing power consumption,without considering fouling.However,low flow velocity promotes fouling.Therefore,it's crucial to balance fouling and energy/water conservation for optimal CCWS long-term operation.This study proposes a mixed-integer nonlinear programming(MINLP)model to achieve this goal.The model considers fouling in the pipeline,dynamic concentration cycle,and variable frequency drive to optimize the synergy between heat transfer,pressure drop,and fouling.By optimizing the concentration cycle of the CCWS,water conservation and fouling control can be achieved.The model can obtain the optimal operating parameters for different operation intervals,including the number of pumps,frequency,and valve local resistance coefficient.Sensitivity experiments on cycle and environmental temperature reveal that as the cycle increases,the marginal benefits of energy/water conservation decrease.In periods with minimal impact on fouling rate,energy/water conservation can be achieved by increasing the cycle while maintaining a low fouling rate.Overall,the proposed model has significant energy/water saving effects and can comprehensively optimize the CCWS through its incorporation of fouling and cycle optimization. 展开更多
关键词 Computer simulation Circulating water system foulING Concentration cycle OPTIMIZATION Variable frequency drive
下载PDF
Gedankenexperiment for Modified ZPE and Planck’s “Constant”, h, in the Beginning of Cosmological Expansion, Partly Due to NLED
3
作者 Andrew Walcott Beckwith 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期180-184,共5页
We initially look at a non singular universe representation of entropy, based in part on what was brought up by Muller and Lousto. This is a gateway to bringing up information and computational steps (as defined by Se... We initially look at a non singular universe representation of entropy, based in part on what was brought up by Muller and Lousto. This is a gateway to bringing up information and computational steps (as defined by Seth Lloyd) as to what would be available initially due to a modified ZPE formalism. The ZPE formalism is modified as due to Matt Visser’s alternation of k (maximum) ~ 1/(Planck length), with a specific initial density giving rise to initial information content which may permit fixing the initial Planck’s constant, h, which is pivotal to the setting of physical law. The settings of these parameters depend upon NLED. 展开更多
关键词 ZPE Planck’s constant Gedankenexperiment NLED
下载PDF
Elementary Fermions: Strings, Planck Constant, Preons and Hypergluons
4
作者 Doron Kwiat 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期82-100,共19页
Using real fields instead of complex ones, it is suggested here that the fermions are pairs of coupled strings with an internal tension. The interaction between the two coupled strings is due to an exchange mechanism ... Using real fields instead of complex ones, it is suggested here that the fermions are pairs of coupled strings with an internal tension. The interaction between the two coupled strings is due to an exchange mechanism which is proportional to Planck’s constant. This may be the result of two massless bosons (hypergluons) coupled by a preon (prequark) exchange. It also gives a physical explanation to the origin of the Planck constant, and origin of spin. 展开更多
关键词 FERMIONS Preons Hypergluons Strings Real Fields Planck constant INTERFERENCE SPIN
下载PDF
ESTIMATE ON THE BLOCH CONSTANT FOR CERTAIN HARMONIC MAPPINGS UNDER A DIFFERENTIAL OPERATOR
5
作者 陈洁玲 刘名生 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期295-310,共16页
In this paper,we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the formL(f)=zfz-zfz,where f represents normalized harmonic mappings with bounded dilation.Then,... In this paper,we first obtain the precise values of the univalent radius and the Bloch constant for harmonic mappings of the formL(f)=zfz-zfz,where f represents normalized harmonic mappings with bounded dilation.Then,using these results,we present better estimations for the Bloch constants of certain harmonic mappings L(f),where f is a K-quasiregular harmonic or open harmonic.Finally,we establish three versions of BlochLandau type theorem for biharmonic mappings of the form L(f).These results are sharp in some given cases and improve the related results of earlier authors. 展开更多
关键词 Bloch-Landau type theorem Bloch constant linear complex operator harmonic mapping biharmonic mapping UNIVALENT
下载PDF
The Extremal Universe Exact Solution from Einstein’s Field Equation Gives the Cosmological Constant Directly
6
作者 Espen Gaarder Haug 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期386-397,共12页
Einstein’s field equation is a highly general equation consisting of sixteen equations. However, the equation itself provides limited information about the universe unless it is solved with different boundary conditi... Einstein’s field equation is a highly general equation consisting of sixteen equations. However, the equation itself provides limited information about the universe unless it is solved with different boundary conditions. Multiple solutions have been utilized to predict cosmic scales, and among them, the Friedmann-Lemaître-Robertson-Walker solution that is the back-bone of the development into today standard model of modern cosmology: The Λ-CDM model. However, this is naturally not the only solution to Einstein’s field equation. We will investigate the extremal solutions of the Reissner-Nordström, Kerr, and Kerr-Newman metrics. Interestingly, in their extremal cases, these solutions yield identical predictions for horizons and escape velocity. These solutions can be employed to formulate a new cosmological model that resembles the Friedmann equation. However, a significant distinction arises in the extremal universe solution, which does not necessitate the ad hoc insertion of the cosmological constant;instead, it emerges naturally from the derivation itself. To the best of our knowledge, all other solutions relying on the cosmological constant do so by initially ad hoc inserting it into Einstein’s field equation. This clarification unveils the true nature of the cosmological constant, suggesting that it serves as a correction factor for strong gravitational fields, accurately predicting real-world cosmological phenomena only within the extremal solutions of the discussed metrics, all derived strictly from Einstein’s field equation. 展开更多
关键词 General Relativity Theory Cosmological constant Extremal Solution Reissner-Nordström KERR Kerr-Newman
下载PDF
Enriched Constant Elements in the Boundary Element Method for Solving 2D Acoustic Problems at Higher Frequencies
7
作者 Zonglin Li Zhenyu Gao Yijun Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2159-2175,共17页
The boundary element method(BEM)is a popular method for solving acoustic wave propagation problems,especially those in exterior domains,owing to its ease in handling radiation conditions at infinity.However,BEM models... The boundary element method(BEM)is a popular method for solving acoustic wave propagation problems,especially those in exterior domains,owing to its ease in handling radiation conditions at infinity.However,BEM models must meet the requirement of 6–10 elements per wavelength,using the conventional constant,linear,or quadratic elements.Therefore,a large storage size of memory and long solution time are often needed in solving higher-frequency problems.In this work,we propose two new types of enriched elements based on conventional constant boundary elements to improve the computational efficiency of the 2D acoustic BEM.The first one uses a plane wave expansion,which can be used to model scattering problems.The second one uses a special plane wave expansion,which can be used tomodel radiation problems.Five examples are investigated to showthe advantages of the enriched elements.Compared with the conventional constant elements,the new enriched elements can deliver results with the same accuracy and in less computational time.This improvement in the computational efficiency is more evident at higher frequencies(with the nondimensional wave numbers exceeding 100).The paper concludes with the potential of our proposed enriched elements and plans for their further improvement. 展开更多
关键词 Enriched boundary elements constant elements 2D acoustic problems higher frequency
下载PDF
New Approach to Synchronize General Relativity and Quantum Mechanics with Constant “K”-Resulting Dark Matter as a New Fundamental Force Particle
8
作者 Siva Prasad Kodukula 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期292-302,共11页
Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction a... Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further. 展开更多
关键词 General Relativity Quantum Mechanics Space Time Dark Matter A New Fundamental constant “K”
下载PDF
Probing the electric double layer structure at nitrogen-doped graphite electrodes by constant-potential molecular dynamics simulations
9
作者 Legeng Yu Nan Yao +5 位作者 Yu-Chen Gao Zhong-Heng Fu Bo Jiang Ruiping Li Cheng Tang Xiang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期299-305,I0008,共8页
Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite ano... Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes. 展开更多
关键词 Lithium batteries Graphite N-DOPING Electric double layer Molecular dynamics constant potential method Electrode potential
下载PDF
Predicting High Precision Hubble Constant Determinations Based on a New Theoretical Relationship between CMB Temperature and H0
10
作者 Eugene Terry Tatum Espen Gaarder Haug Stéphane Wojnow 《Journal of Modern Physics》 2024年第11期1708-1716,共9页
Based on considerable progress made in understanding the Cosmic Microwave Background (CMB) temperature from a deep theoretical perspective, this paper demonstrates a useful and simple relationship between the CMB temp... Based on considerable progress made in understanding the Cosmic Microwave Background (CMB) temperature from a deep theoretical perspective, this paper demonstrates a useful and simple relationship between the CMB temperature and the Hubble constant. This allows us to predict the Hubble constant with much higher precision than before by using the CMB temperature. This is of great importance, since it will lead to much higher precision in various global parameters of the cosmos, such as the Hubble radius and the age of the universe. We have improved uncertainty in the Hubble constant all the way down to 66.8712 ± 0.0019 km/s/Mpc based on data from one of the most recent CMB studies. Previous studies based on other methods have rarely reported an uncertainty much less than approximately ±1 km/s/Mpc for the Hubble constant. Our deeper understanding of the CMB and its relation to H0seems to be opening a new era of high-precision cosmology, which may well be the key to solving the Hubble tension, as alluded to herein. Naturally, our results should also be scrutinized by other researchers over time, but we believe that, even at this stage, this deeper understanding of the CMB deserves attention from the research community. 展开更多
关键词 Hubble constant CMB Planck Temperature Upsilon constant
下载PDF
Upsilon Constants and Their Usefulness in Planck Scale Quantum Cosmology
11
作者 Eugene Terry Tatum 《Journal of Modern Physics》 2024年第2期167-173,共7页
This paper introduces the two Upsilon constants to the reader. Their usefulness is described with respect to acting as coupling constants between the CMB temperature and the Hubble constant. In addition, this paper su... This paper introduces the two Upsilon constants to the reader. Their usefulness is described with respect to acting as coupling constants between the CMB temperature and the Hubble constant. In addition, this paper summarizes the current state of quantum cosmology with respect to the Flat Space Cosmology (FSC) model. Although the FSC quantum cosmology formulae were published in 2018, they are only rearrangements and substitutions of the other assumptions into the original FSC Hubble temperature formula. In a real sense, this temperature formula was the first quantum cosmology formula developed since Hawking’s black hole temperature formula. A recent development in the last month proves that the FSC Hubble temperature formula can be derived from the Stephan-Boltzmann law. Thus, this Hubble temperature formula effectively unites some quantum developments with the general relativity model inherent in FSC. More progress towards unification in the near-future is expected. 展开更多
关键词 Quantum Cosmology Hubble constant Planck Scale Upsilon constant Flat Space Cosmology Black Holes CMB Temperature ΛCDM Cosmology Quantum Gravity Unification
下载PDF
The Planck Constant and Its Relation to the Compton Frequency
12
作者 Espen Gaarder Haug 《Journal of Applied Mathematics and Physics》 2024年第1期168-180,共13页
The Planck constant is considered one of the most important universal constants of physics, and despite all we know much about it, the physical nature of it has not been fully understood. Further investigation and new... The Planck constant is considered one of the most important universal constants of physics, and despite all we know much about it, the physical nature of it has not been fully understood. Further investigation and new perspectives on the Planck constant should therefore be of interest. We demonstrate that the Planck constant also can be directly linked to the Compton frequency of one, which again is divided by the Compton frequency in one kg. If this is right, it means also the Planck constant is linked to quantization of matter, not only energy. However, as we will show the frequency of one when expressed in relation to kg will be observational time dependent. This means the missing mass gap surprisingly both is equal to the Planck mass, which is larger than any known particle and also it is linked to a very small mass that again is equal to what has been suggested as the photon mass in the existing literature. This new view could be an important step forward in understanding the physical nature of the Planck constant as well as the mass gap and even the rest mass of a photon. 展开更多
关键词 Planck constant Compton Frequency ELECTRON Proton Count
下载PDF
The Gravitational Constant as the Function of the Cosmic Scale
13
作者 Qiao Bi 《Journal of Modern Physics》 2024年第11期1745-1759,共15页
This paper uses the cosmic evolution picture constructed by the principal and associated fiber bundles and, with the help of gauge invariance, systematically proposes the γfactor theory that the Newton’s law of univ... This paper uses the cosmic evolution picture constructed by the principal and associated fiber bundles and, with the help of gauge invariance, systematically proposes the γfactor theory that the Newton’s law of universal gravitation and the cosmological constant of Einstein’s equation must be corrected in the large-scale space-time structure of the universe. That is, it is found that the calculated value of Newton’s universal gravitation in space-time above the scale of galaxies must be multiplied by 1/γto be consistent with the measured value, and the cosmological constant of Einstein’s equation is no longer a constant but a function that increases with the increase of the scale of cosmic regions. Therefore, the cyclic hypothesis of cosmic evolution is proposed, and it is further found that the gravitational constant that people think is natural is not a constant but a function that changes with the scale of cosmic regions. Therefore, the reason for the dark matter and dark energy hypothesis may be that the gravitational constant is a variable. The existence of actual dark matter and dark energy may be just an illusory hypothesis, and their origin comes from the understanding that the gravitational constant is constant. 展开更多
关键词 The Gravitational constant The Einstein Equation The Evolution of Universe
下载PDF
Introducing a 2nd Universal Space-Time Constant Can Explain the Observed Age of the Universe and Dark Energy
14
作者 Herman A. van Hoeve 《World Journal of Mechanics》 2024年第2期9-22,共14页
The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal ... The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal space-time constant, besides having a finite speed constant (speed of light in vacuum c). A finite universal age constant b is introduced. Namely, this paper shows that the changes in the Earth’s anomalistic year duration over time support the hypothesis of the age of the universe correlating with a maximum number of orbital revolutions constant. Neglecting the gravitational influence of other cosmological entities in the proximity of the Earth, the constant maximum number of revolutions is herewith determined solely by the Earth’s orbital revolutions around the Sun. The value of the universal age constant b is calculated to be around 13.8 billion orbital revolutions, derived out of an equation related to the changes in the Earth’s anomalistic year duration over time and the so-called Hubble tension. The above-mentioned calculated value b correlates well with the best fit to measured data of the cosmic microwave background radiation (CMBR) by the Planck spacecraft, the age of the observed universe is measured to be approximately 13.787 ± 0.020 billion years (2018 final data release). Developing a theory with this 2<sup>nd</sup> universal space-time constant b, being covariant with respect to the Lorentz transformations when time spans are large, gives results such as: A confirmation of the measured CMBR value of 13.787 ± 0.020 billion years. Correlating well with the observed expansion rate of the universe (dark energy). The universe’s expansion accelerating over the last four to five billion years. 展开更多
关键词 Anomalistic Year Orbital Revolution Hubble Tension Age of the Universe Cosmological constant Dark Energy Cosmic Microwave Background
下载PDF
Robust Nonlinear Current Sensorless Control of the Boost Converter with Constant Power Load
15
作者 Said Oucheriah Abul Azad 《Circuits and Systems》 2024年第3期29-43,共15页
The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the ... The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations. 展开更多
关键词 Boost Converter Robust Sliding Mode Control constant Power Load (CPL) Current-Sensorless Control Extended State Observer
下载PDF
Stoichiometry and Stability Constant Values for Copper (II) Chelates with Ethylene Diamine in Deep Eutectic Solvents (DES) (Ethaline) Solutions
16
作者 Khalid El Ttaib Abdolhadi Benhmid Rifat Hasan Omar 《Open Journal of Applied Sciences》 2024年第9期2592-2609,共18页
In this study we used the deep eutectic solvents (ionic liquids) to investigate the reaction between copper (II) with ethylene diamine (en). Two of the existing methods for analyzing spectrophotometric measurements ha... In this study we used the deep eutectic solvents (ionic liquids) to investigate the reaction between copper (II) with ethylene diamine (en). Two of the existing methods for analyzing spectrophotometric measurements have been applied for establishing, the stoichiometry and whenever possible, the stability constants of the chelates formed. The method of continuous variations was necessary to determine first whether, the metal ion and the ligand ethylene diamine form one or more than one chelate, when more than one chelate formed, the results obtained depend on the wavelength and for meaningful conclusions the wavelengths were carefully selected. The empirical formulae of the chelates were further substantiated by the molar ratio method. The effect of time and temperature on the formation and stability of these chelates in solution is also studied. The stability constants, K1 and K2 for the copper (II) chelates were calculated, though reliable, and are comparable to literature values. 展开更多
关键词 CU(II) Ethylene Diamine (en) Deep Eutectic Solvents Job’s Method Ionic Liquids and Stability constant
下载PDF
A Solution to the Cosmological Constant Problem Using the Holographic Principle (A Brief Note)
17
作者 Eugene Terry Tatum 《Journal of Modern Physics》 2024年第2期159-166,共8页
This paper integrates a quantum conception of the Planck epoch early universe with FSC model formulae and the holographic principle, to offer a reasonable explanation and solution of the cosmological constant problem.... This paper integrates a quantum conception of the Planck epoch early universe with FSC model formulae and the holographic principle, to offer a reasonable explanation and solution of the cosmological constant problem. Such a solution does not appear to be achievable in cosmological models which do not integrate black hole formulae with quantum formulae such as the Stephan-Boltzmann law. As demonstrated herein, assuming a constant value of Lambda over the great span of cosmic time appears to have been a mistake. It appears that Einstein’s assumption of a constant, in terms of vacuum energy density, was not only a mistake for a statically-balanced universe, but also a mistake for a dynamically-expanding universe. 展开更多
关键词 Quantum Cosmology Planck Scale Cosmological constant Black Holes Holographic Principle Flat Space Cosmology AdS-CFT ER = EPR Cosmology Model
下载PDF
Discrete element method analysis of lateral resistance of fouled ballast bed 被引量:3
18
作者 XU Yang 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2373-2381,共9页
The lateral resistance of sleeper plays an important role in ensuring the stability of a railway track, which may change in the operation of railway, due to the fouling in the ballast bed. In this work, discrete eleme... The lateral resistance of sleeper plays an important role in ensuring the stability of a railway track, which may change in the operation of railway, due to the fouling in the ballast bed. In this work, discrete element method was adopted to investigate the effect of fouling on the lateral resistance of sleeper. The shape information of ballast was captured by method of three-dimensional vision reconstruction. In order to calibrate the mechanical parameters and verify the models, a lateral resistance field test was carried out by using a custom-made device. The contact force distributions in the different parts of sleeper as well as the interaction between ballast and sleeper were discussed in depth. The results show that fouling of ballast bed evidently reduces the lateral resistance of sleeper and the decreasing degree is also related to the fouled position of ballast bed, in the order of shoulder > bottom > side.Therefore, the effect of fouling, especially the fouling in the ballast shoulder, on the lateral resistance of sleeper, should be taken into account in ballast track maintenance work. 展开更多
关键词 discrete element modelling three-dimensional vision reconstruction BALLAST lateral resistance of sleeper ballast fouling
下载PDF
Analysis of influence of heat exchangerfouling on heat transfer performancebased on thermal fluid coupling 被引量:1
19
作者 HUANG Si MURAD Tariq +2 位作者 NIU Qifeng LIN Guangtang CHEN Jianxun 《排灌机械工程学报》 CSCD 北大核心 2023年第7期695-700,共6页
A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid do... A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact. 展开更多
关键词 shell-tube heat exchanger thermal fluid coupling fouling thermal resistance heat transfer analysis
下载PDF
Sliding modes of fault activation under constant normal stiffness conditions 被引量:2
20
作者 Chuanqing Zhang Jie Xu +3 位作者 Shengji Jin Guojian Cui Yuhang Guo Lingyu Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1213-1225,共13页
Fault activation has been the focus of research community for years.However,the studies of fault activation remain immature,such as the fault activation mode and its major factors under constant normal stiffness(CNS)c... Fault activation has been the focus of research community for years.However,the studies of fault activation remain immature,such as the fault activation mode and its major factors under constant normal stiffness(CNS)conditions associated with large thickness of fault surrounding rock mass.In this study,the rock friction experiments were conducted to understand the fault activation modes under the CNS conditions.Two major parameters,i.e.the initial normal stress and loading rate,were considered and calibrated in the tests.To reveal the response mechanism of fault activation,the local strains near the fault plane were recorded,and the macroscopic stresses and displacements were analyzed.The testing results show that the effect of displacement-controlled loading rate is more pronounced under the CNS conditions than that under constant normal load(CNL)conditions.Both the normal and shear stresses drop suddenly when the stick-slip occurs.The decrease and increase of the normal stress are synchronous with the shear stress in the regular stick-slip scenario,but mismatch with the shear stress during the chaotic stick-slip process.The results are helpful for understanding the fault sliding mode and the prediction and prevention of fault slip. 展开更多
关键词 Fault activation Rock friction mechanics Sliding modes constant normal stiffness(CNS) Displacement-controlled loading rates ROCKBURST
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部