The present investigation shows that comparing with the evaporation of vapor-liquid two-phase flow boiling system, heat transfer is enhanced by adding proper inert solid particles into the traditional Chinese medicine...The present investigation shows that comparing with the evaporation of vapor-liquid two-phase flow boiling system, heat transfer is enhanced by adding proper inert solid particles into the traditional Chinese medicine liquid which is under evaporation. As a result, fouling prevention effects are evident in such three-phase flow boiling evaporator.展开更多
A liquid-solid circulating fluidized bed boiler is designed and built for visualization research by applying the fluidized bed heat transfer and fouling prevention technology to the water side of the boiler. Four type...A liquid-solid circulating fluidized bed boiler is designed and built for visualization research by applying the fluidized bed heat transfer and fouling prevention technology to the water side of the boiler. Four types of engineering plastic particles with different physical properties are selected as the solid working media. The effect of particle types on the fluidization and distribution of particles in the boiler is investigated under different feedwater flow rates and amount of added particles by using the charge couple device image measurement and acquisition system. The results show that all kinds of particles can't be normally fluidized and accumulate in the drum at low amount of added particles and feedwater flow rate. The particles with great density and low sphericity are more likely to accumulate. The average solid holdup in the riser tubes increases with the increase in feedwater flow rate and the amount of added particles. The non-uniform degree of particle distribution in the riser tubes generally decreases with the increase in feedwater flow rate and the amount of added particles. The particles with small density and settling velocity have high average solid holdup in the riser tubes under close sphericity. In generally,the smaller the density and settling velocity, the more uniform the particle distribution in the riser tubes.Three-dimensional diagrams of the non-uniform degree of particle distribution in the riser tubes of the boiler are established.展开更多
A vapor-liquid-solid horizontal circulating fluidized bed evaporation setup was constructed to study the thermal-exchange properties and pressure change.The influences of the operating variables,including the amount o...A vapor-liquid-solid horizontal circulating fluidized bed evaporation setup was constructed to study the thermal-exchange properties and pressure change.The influences of the operating variables,including the amount of added particles,heat flux,and circulating flow velocity,were systematically inspected using resistance temperature detectors and pressure sensors.The results showed that the heat transfer eff ect was improved with the increase in the amount of added particles,circulating flow velocity,and particle diameter,but decreased with increasing heat flux.The pressure drop fluctuated with the increase in operating parameters,except circulating flow velocity.The enhancing factor reached up to 71.5%.The enhancing fac-tor initially increased and then decreased with the increase in the amount of added particles and circulating flow velocity,fluctuated with increasing particle diameter,and decreased with increasing heat flux.Phase diagrams showing the variation ranges of the operation variables for the enhancing factor were constructed.展开更多
文摘The present investigation shows that comparing with the evaporation of vapor-liquid two-phase flow boiling system, heat transfer is enhanced by adding proper inert solid particles into the traditional Chinese medicine liquid which is under evaporation. As a result, fouling prevention effects are evident in such three-phase flow boiling evaporator.
基金supported by the open foundation of State Key Laboratory of Chemical Engineering (SKL–ChE–18B03)the Municipal Science and Technology Commission of Tianjin, China (2009ZCKFGX01900)。
文摘A liquid-solid circulating fluidized bed boiler is designed and built for visualization research by applying the fluidized bed heat transfer and fouling prevention technology to the water side of the boiler. Four types of engineering plastic particles with different physical properties are selected as the solid working media. The effect of particle types on the fluidization and distribution of particles in the boiler is investigated under different feedwater flow rates and amount of added particles by using the charge couple device image measurement and acquisition system. The results show that all kinds of particles can't be normally fluidized and accumulate in the drum at low amount of added particles and feedwater flow rate. The particles with great density and low sphericity are more likely to accumulate. The average solid holdup in the riser tubes increases with the increase in feedwater flow rate and the amount of added particles. The non-uniform degree of particle distribution in the riser tubes generally decreases with the increase in feedwater flow rate and the amount of added particles. The particles with small density and settling velocity have high average solid holdup in the riser tubes under close sphericity. In generally,the smaller the density and settling velocity, the more uniform the particle distribution in the riser tubes.Three-dimensional diagrams of the non-uniform degree of particle distribution in the riser tubes of the boiler are established.
基金supported by the open foundation of State Key Laboratory of Chemical Engineering(No.SKL-ChE-18B03)by the Municipal Science and Technology Commission of Tianjin,China(No.2009ZCKFGX01900).
文摘A vapor-liquid-solid horizontal circulating fluidized bed evaporation setup was constructed to study the thermal-exchange properties and pressure change.The influences of the operating variables,including the amount of added particles,heat flux,and circulating flow velocity,were systematically inspected using resistance temperature detectors and pressure sensors.The results showed that the heat transfer eff ect was improved with the increase in the amount of added particles,circulating flow velocity,and particle diameter,but decreased with increasing heat flux.The pressure drop fluctuated with the increase in operating parameters,except circulating flow velocity.The enhancing factor reached up to 71.5%.The enhancing fac-tor initially increased and then decreased with the increase in the amount of added particles and circulating flow velocity,fluctuated with increasing particle diameter,and decreased with increasing heat flux.Phase diagrams showing the variation ranges of the operation variables for the enhancing factor were constructed.